Расход теплоносителя: формула, расчет тепловых потерь

Выбор циркуляционного насоса для системы отопления. Часть 2

Циркуляционный насос выбирается по двум основным характеристикам:

  1. G* — расходу, выраженному в м3/час;

  2. H — напору, выраженному в м.

*Для записи расхода теплоносителя производители насосного оборудования пользуются буквой Q. Производители запорной арматуры, например, Данфосс для расчета расхода пользуется буквой G.

В отечественной практике также используется эта буква.

Поэтому в рамках объяснений этой статьи мы также будем пользоваться буквой G, Но в других статьях, подойдя непосредственно к разбору графика работы насоса, для расхода мы все же будем использовать букву Q.

Определение расхода (G, м3/час) теплоносителя при выборе насоса

Отправной точкой для подбора насоса служит количество тепла, которое теряет дом. Как это узнать? Для этого нужно сделать расчет теплопотерь.

Это сложный инженерный расчет, предполагающий знание многих составляющих. Поэтому в рамках этой статьи мы опустим это объяснение, а за основу количества теплопотерь возьмем одну из распространенных (но далеко не точных) методик, которой пользуются многие монтажные фирмы.

Ее суть заключается в некоем среднем показателе потерь на 1 м2.

Эта величина условна и составляет 100 Вт/м2 (если дом или комната имеют неутепленные кирпичные стены, да еще недостаточной толщины, количество тепла, теряемого помещением, будет значительно больше.

Обратите внимание

И наоборот, если ограждающие конструкции дома сделаны с применением современных материалов и имеют хорошую теплоизоляцию, потери тепла будут снижены и могут составлять 90 или 80 Вт/м2).

Итак, предположим, что вы имеете дом площадью 120 или 200 м2. Тогда условленное нами количество теплопотерь для всего дома будет составлять:

120 * 100 = 12000 Вт или 12 кВт.

Какое это имеет отношение к насосу? Самое прямое.

Процесс теплопотерь в доме происходит постоянно, а значит и процесс нагревания помещений (компенсация теплопотерь) должен идти постоянно.

Представьте, что у вас нет насоса, нет трубопроводов. Как бы вы решили эту задачу?

Чтобы компенсировать теплопотери вам пришлось бы сжигать какой-то вид топлива в отапливаемом помещении, например, дрова, что в принципе тысячелетиями люди и делали.

Но вы решили отказаться от дров и использовать для обогревания дома воду. Что вам пришлось бы делать? Вам пришлось бы брать ведро( -а), наливать туда воду и греть ее на костре или газовой плите до температуры кипения.

После этого брать ведра и нести их в комнату, где вода отдавала бы свое тепло помещению. Затем брать другие ведра с водой и снова ставить их на костер или газовую плиту для нагревания воды, а затем нести их в комнату взамен первых.

И так до бесконечности.

Сегодня за вас эту работу выполняет насос. Он заставляет воду двигаться к устройству, где она нагревается (котел), а затем для передачи сохраненного в воде тепла по трубопроводам направляет ее к отопительным приборам для компенсации теплопотерь в помещении.

Возникает вопрос: сколько нужно воды в еденицу времени, нагретой до заданной температуры, чтобы компенсировать теплопотери дома?

Как это посчитать?

Для этого нужно знать несколько величин:

  • количество тепла, которое необходимо для компенсации тепловых потерь (в этой статье за основу мы взяли дом  площадью 120 м2 с теплопотерями 12000 Вт)
  • удельная теплоемкость воды равная 4200 Дж/кг * оС;
  • разница между начальной температурой t1 (температура обратки) и конечной температурой t2 (температурой подачи), до которой нагревается теплоноситель (эта разница обозначается как ΔT и в теплотехнике для расчета систем радиаторного отопления определяется в 15 — 20 оС).

Эти значения нужно подставить в формулу:

G = Q / (c * (t2 — t1)), где

G — требуемый расход воды в системе отопления, кг/сек. (Этот параметр должен обеспечивать насос. Если купить насос с меньшим расходом, то он не сможет дать количество воды необходимое для компенсации тепловых потерь; если взять насос с завышенным расходом, это приведет к снижению его КПД, перерасходу электроэнергии и большим начальным затратам);

Q — количество тепла Вт, необходимое для компенсации теплопотерь;

t2 — температура конечная, до которой нужно нагреть воду (обычно 75, 80 или 90 оС);

t1 — температура начальная (температура теплоносителя, остывшего на 15 — 20 оС);

c — удельная теплоемкость воды, равная 4200 Дж/кг * оС.

Подставляем известные значения в формулу и получаем:

G = 12000 / 4200 * (80 — 60) = 0,143 кг/с

Такой расход теплоносителя в течение секунды необходим для компенсации тепловых потерь вашего дома площадью 120 м2.

Важно

На практике пользуются расходом воды, перемещенным в течение 1 часа. В этом случае формула, пройдя некоторые преобразования принимает следующий вид:

G = 0,86 * Q / t2 — t1;

или

G = 0,86 * Q / ΔT, где

ΔT — разность температур между подачей и обраткой (как мы уже увидели выше, ΔT — величина известная, закладываемая изначально в расчет).

Итак, какими бы сложными, на первый взгляд, не показались объяснения по подбору насоса, учитывая такую важную величину, как расход, сам расчет и, следовательно, подбор по этому параметру довольно прост.

Все сводится к подстановке известных значений в простую формулу. Эту формулу можно «вбить» в программе Excel и пользоваться этим файлом, как быстрым калькулятором.

Потренируемся!

Задача: нужно подсчитать расход теплоносителя для дома площадью 490 м2.

Решение:

Q (количество теплопотерь) = 490 * 100 = 49000 Вт = 49 кВт.

Проектный температурный режим между подачей и обраткой закладываем следующий: температура подачи — 80 оС, температура обратки — 60 оС (по-другому запись делается как 80/60 оС).

Следовательно, ΔT = 80 — 60 = 20 оС.

Теперь все значения подставляем в формулу:

G = 0,86 * Q / ΔT = 0,86 * 49 / 20 = 2,11 м3/час.

Как всем этим пользоваться непосредственно при выборе насоса, вы узнаете в заключительной части этой серии статей. А сейчас поговорим о второй важной характеристике — напоре. Читать далее

Часть 1; Часть 2; Часть 3; Часть 4.

Источник: http://umnoeotoplenie.ru/kak_vybrat_tcirkuliatcionniy_nasos_2

Как сделать расчет расхода теплоносителя для системы отопления – теория и практика

Содержание:

На этапе проектирования отопительной системы, в контуре которой циркулирует вода, возникают ситуации, когда нужно выполнить расчет расхода теплоносителя. Этот показатель требуется для того, чтобы подобрать правильный объём расширительного бачка, который напрямую зависит от мощности системы.

Более того, высчитывают и необходимую мощность. Ведь важно знать заранее, сможет ли отопительное оборудование справиться с обогревом помещения. И здесь так же понадобится формула расхода теплоносителя.

Как выбрать циркуляционный насос

Уютным жильё не назовёшь, если в нём будет холодно. И не важно, какая в доме мебель, отделка или внешний вид в целом. Всё начинается с тепла, а оно невозможно без создания системы отопления.

Недостаточно купить «навороченный» нагревательный агрегат и современные дорогие радиаторы — для начала нужно продумать и распланировать по деталям систему, которая будет поддерживать в помещении оптимальный температурный режим. И не важно, относится ли это к дому, где постоянно живут люди, или это большой загородный дом, маленькая дача. Без тепла жилым помещение не будет и находиться в нём будет не комфортно.

Для достижения хорошего результата нужно понимать, что и как делать, какие имеются нюансы в отопительной системе, и как они повлияют на качество обогрева.

Когда делают монтаж индивидуальной системы отопления, нужно предусматривать все возможные детали её работы.

Она должна выглядеть как единый сбалансированный организм, требующий минимума вмешательства со стороны человека. Мелких деталей тут нет – важным является параметр каждого устройства.

Это может быть мощность котла или диаметр и тип трубопровода, вид и схема подключений отопительных приборов.

Без циркуляционного насоса сегодня не обходится ни одна современная отопительная система.

Два параметра, по которым выбирают этот прибор:

  • Q — показатель расхода теплоносителя за 60 минут, выраженный в кубометрах.
  • Н — показатель напора, который выражен в метрах.

Многие технические статьи и нормативные документы, а так же производители прибора пользуются обозначением Q.

Как сделать расчёт

При выборе насоса нужно знать, какое количество тепла дом отдаёт в окружающую среду. Какая тут связь? Дело в том, что теплоноситель, нагретый до определённого температурного режима, циркулируя по системе, постоянно отдаёт часть тепла в наружные стены. Это и есть теплопотери домовладения.

Насос помогает в нужном режиме циркулировать жидкости по трубам и радиаторам. Следует выяснить тот минимум теплоносителя, который будет перекачивать насос. Всё взаимосвязано: количество теплоносителя — тепловая энергия — работа циркуляционного насоса. Если тепловой энергии не хватит для компенсации теплопотерь, то система будет не эффективной.

Получается, что для того, чтобы решить задачу, нужно выяснить пропускную способность, которую может «потянуть» насос. Другими словами, необходимо рассчитать расход теплоносителя.

Совет

Но у этого параметра другое название, так как он, кроме насоса, зависит ещё от двух факторов: степени нагрева теплоносителя и пропускной способности водяного контура.

Таким образом, чтобы рассчитать расход теплоносителя в системе отопления, выясняют тепловые потери домовладения.

Этапы расчёта:

  • находят тепловые потери дома;
  • выясняют среднюю температуру теплоносителя;
  • делают расчет расхода теплоносителя по тепловой нагрузке, где учитываются теплопотери.

Как выяснить теплопотери

Чтобы выяснить теплопотери дома в количественном выражении, существует специальная формула. С её помощью вычисляется мощность теплового излучения во внешнюю среду каждого квадратного метра площади стен, поверхностей пола и потолка.

Средние значения следующие:

  • 100 Ватт на 1 кв. метр площади для обычных кирпичных стен со стандартной внутренней отделкой;
  • более 100 Ватт для плохо утеплённых стен;
  • 80 Ватт для перекрытий с наружной и внутренней теплоизоляцией и современными стеклопакетами.

Для того, чтобы вывести эти показатели, пользуются формулой или данными таблицы.

Точный расчёт теплопотерь

С помощью специальной величины, которая характеризует тепловой поток и измеряется в кКал/час, выясняют тепловые потери дома.

Эта величина показывает, сколько тепла уходит через стены здания при определённом температурном режиме внутри дома.

Данный показатель рассматривают в прямой зависимости от архитектурных особенностей здания, строительных материалов, из которых оно построено, толщины и степени теплоизоляции стен, потолка и пола. Оказывает влияние площадь остекления, качество теплоизоляторов и соблюдение технологии при их монтаже.

То есть теплопотери складываются из многих элементов.

Формула следующая: G = Sх1/Pох(Тв- Тн)к, где:

  • G — величина, которую выражают в кКал/ч;
  • Po — показатель сопротивления при теплопередаче;
  • Тв иТн — разница температурного режима внутри и снаружи;
  • к — коэффициент, который показывает, насколько теряется тепло, он у каждого заграждения свой.

Так как температура на улице и в помещении меняется в течение отопительного сезона, величины берут средние. Учитывается и тот факт, что у каждого региона с разными климатическими условиями показатель свой.

В данной формуле используются конкретные величины, все они известны. По ней можно узнать тепловые потери любого здания.

Понижающий коэффициент и значение сопротивления Pо относятся к категории нормативно-справочной информации.

Так, например, могут понадобиться следующие коэффициенты:

  • 1 — если под чистовыми полами грунт или деревянные лаги;
  • 0,9 — для чердачных перекрытий, где кровельным материалом являются сталь, черепица на обрешётке, асбоцемент (либо крыша без чердака с вентиляцией);
  • 0,8 — материалы кровли те же, но настил сплошной;
  • 0,75 — чердачные перекрытия, где кровля из любого рулонного материала;
  • 0,7 — для внутренних стен, которые выходят в соседнее неотапливаемое помещение без наружных стен;
  • 0,4 — для внутренних стен, которые соединяют с соседним неотапливаемым помещением, у которого есть наружные стены, и для полов над погребом, углублённом в грунт;
  • 0,75 — полы над погребом, устроенном выше грунта;
  • 0,6 — поверхности над подвалами, расположенными либо ниже грунта, либо не выше одного метра над ним.
  • Аналогично можно подобрать коэффициенты для других ситуаций.

Могут понадобиться следующие значения сопротивления:

  • 0,38 — при сплошной кирпичной кладке с толщиной стен в 13,5 см, 0,57 — с толщиной кладки 26,5 см, 0,76 — 39,5 см, 0,94 — 52,5 см, 1,13 — 65,5 см.
  • 0,9 — при сплошной кладке с воздушной прослойкой при толщине 43,5 см, 1,09 — 56,5 см, 1,28 — 65,5 см;
  • 0,89 — при сплошной кладке из декоративного кирпича с толщиной в 39,5 см, 1,2 — 52,5 см, 1,4 — 65,5 см.
  • 1,03 — для сплошной кладки, где термоизоляционный слой с толщиной в 39,5см, 1,49 — 52,5 см;
  • 1,33 — для деревянных стен из дерева (не бруса) с толщиной в 200 мм, 1,45 — 220 мм, 1,56 — 240 мм;
  • 1,18 — для стен из бруса с толщиной 150 мм, 1,28 — 180 мм, 1,32 — 200 мм;
  • 0,69 — для чердачных перекрытий из железобетонных плит с утеплителем с толщиной в 100 мм, 0,89 — 150 мм.

Эти показатели берут для формулы расхода воды на отопление.

Конкретные расчёты

Допустим, нужно сделать расчёт для домовладения площадью 150 кв. м. Если принять, что на 1 квадратный метр теряется 100 Ватт тепла, получаем: 150х100=15 кВатт тепловых потерь.

Читайте также:  Как правильно утеплить стены дома: практическое руководство

Как соотносится это значение с циркуляционным насосом? При тепловых потерях происходит постоянный расход тепловой энергии. Для поддержания температурного режима в помещении необходимо большее количество энергии, чем для его компенсации.

Для расчёта циркуляционного насоса для системы отопления, следует понимать, какие у него функции. Это устройство выполняет следующие задачи:

  • создать напор воды, достаточный для того, чтобы преодолеть гидравлическое сопротивление узлов системы;
  • перекачать по трубам и радиаторам такой объем горячей воды, который требуется для эффективного прогрева домовладения.

То есть, для того, чтобы система заработала, нужно подогнать тепловую энергию к радиатору. И эту функцию выполняет циркуляционный насос. Именно он стимулирует подачу теплоносителя к приборам отопления.

Следующая задача: какое количество воды, согретой до нужной температуры, надо доставить к радиаторам за определённый период времени, при этом компенсируя все теплопотери? Ответ выражается в количестве перекачанного теплоносителя в единицу времени. Это и будет называться мощностью, которой обладает циркуляционный насос. И наоборот: можно определить примерный расход теплоносителя по мощности насоса.

Данные, которые для этого нужны:

  • Количество тепловой энергии, необходимой для того, чтобы компенсировать теплопотери. Для данного домовладения площадью 150 кв. метров эта цифра 15 кВт.
  • Удельная теплоёмкость воды, которая выступает в роли теплоносителя — 4200 Дж на 1 килограмм воды, на каждый градус температуры.
  • Дельта температур между водой на подаче из котла и на последнем отрезке трубопровода в обратке.

Считается, что в нормальных условиях это последнее значение не бывает больше 20 градусов. В среднем берут 15 градусов.

Формула для того, чтобы рассчитать насос, следующая: G/(cх(Т1-Т2))= Q

  • Q — это расходование теплоносителя в отопительной системе. Столько жидкости при определённой температуре нужно доставить циркуляционному насосу к отопительным приборам в единицу времени, чтобы теплопотери были компенсированы. Нецелесообразно приобретать устройство, у которого мощность больше. Это приведёт только к повышенному расходу электричества.
  • G — теплопотери дома;
  • Т2 — температура теплоносителя, вытекающая из теплообменника котла. Это именно тот уровень температуры, который нужен для обогрева помещения (примерно 80 градусов);
  • Т1 — температура теплоносителя на обратном трубопроводе при входе в котёл (чаще всего 60 градусов);
  • с — это удельная теплоёмкость воды (4200 Джоулей на кг).

При вычислении с помощью указанной формулы получается цифра 2,4 кг/с.

Теперь нужно перевести этот показатель на язык производителей циркуляционных насосов.

1 килограмм воды соответствует 1 кубическому дециметру. Один кубический метр равен 1000 кубических дециметров.

Получается, что в секунду насос перекачивает воду следующим объёмом:

Далее нужно перевести секунды в часы:

  • 0,0024х3600=8,64 куб. м/ч.

Итоги

Таким образом, выполнив расчет расхода воды на отопление, можно узнать, какой мощности насос следует приобретать в конкретном случае. Переплачивать не имеет смысла, это не экономно и не повлияет на тепловые характеристики системы обогрева. Если циркуляционный насос рассчитать не правильно, то он не потянет нужный объём теплоносителя, более того — быстро выйдет из строя.

В среднем мощность, которой обладают циркуляционные насосы, составляет 10 куб. м/ч. В этом значении заложен запас мощности, поэтому температуру в помещении можно увеличивать без опасения, что насос выйдет из строя. На необходимость изменения температуры жилища могут влиять непредвиденные ситуации, например, аномальные морозы.

Правильно сбалансированная отопительная система, которая работает по принципу принудительной циркуляции, покажет высокий КПД. Это окупит монтаж насоса и затраченное электричество.

Вот и  ответ на вопрос, зачем нужно делать расчет расхода теплоносителя в системе отопления.

В идеале, всеми расчетами должны заниматься специалисты с инженерным образованием. Но не всегда есть возможность найти специалиста. Используя формулы и таблицы, можно сделать расчёт и самостоятельно. После того, как будет определена мощность циркуляционного насоса нужной производительности, его можно подобрать в каталоге.

Если появятся сомнения в расчётах, то нужно обратить внимание на приборы, у которых производительность регулируется. В таком случае небольшие неточности в расчётах уже не будут иметь столь принципиального значения.

Источник: https://teplospec.com/montazh-remont/kak-sdelat-raschet-raskhoda-teplonositelya-dlya-sistemy-otopleniya-teoriya-i-praktika.html

Расчет тепловых потерь в тепловых сетях — Лучшее отопление

Расчёт потерь тепла с трубопроводов тепловых сетей выполнен на основе методики приведенной в СНиП 2.04.14 Тепловая изоляция оборудования и трубопроводов.

Методика расчёта тепловых потерь пригодна для всех трубопроводов, на которые распространяется действие данных норм, за исключением систем с отрицательной температурой рабочей среды.

Расчёт величины тепловых потерь выполнен по нормативной плотности теплового потока через изолированную поверхность трубопровода. В методике использованы табличные данные удельных тепловых потерь с одного метра трубы, приведенные в СНиП. Потери тепла для диаметров труб и температур теплоносителя, не приведенных в таблицах — определены методами интерполяции и экстраполяции.

Расчётные потери тепла трубопроводами тепловой сети определяется по формуле:

q – удельная нормативная величина тепловых потерь с одного метра трубы, Вт/м, при средней температуре теплоносителя и заданном количестве часов работы в год, определяется для каждого из диаметров по табличным данным СНиП 2.04.14;

k – коэффициент, учитывающий дополнительные потери тепла с опор трубопровода и арматуры, принимается по табличным данным;

b – коэффициент, учитывающий изменение плотности теплового потока через теплоизоляционный слой из пенополиуретана (ППУ), определяется по СНиП 2.04.14;

l – длина участка трубопровода, м.

Температуру теплоносителя для расчёта потерь тепла в тепловых сетях следует принимать:

  • среднюю температуру теплоносителя за год — для непрерывно работающих сетей;
  • среднюю температуру теплоносителя за период со среднесуточной температурой наружного воздуха ниже 8°С — для тепловых сетей работающих только в отопительный период.

Расчётные температуры в двухтрубных водяных тепловых сетях при качественном регулировании в зависимости от температурного графика отпуска тепла применяют:

Расчёт потерь тепла с трубопроводов — Тепловых сетей
Программа расчёта потерь тепла трубопроводами Тепловой сети основана на методике приведенной в СНиП 2.04.14 Тепловая изоляция …

Источник: www.ktto.com.ua

Рассмотрим пример расчета теплопотерь.

Потери в тепловых сетях Qтc за отчетный период определяются как сумма теплопотерь с непродуктивной утечкой воды из сети Qут, с продуктивной Qут.пр, и потерь тепла через изоляцию в трубопроводах тепловой сети от границы раздела до узла учета тепловой энергии Qиз.

Значение продуктивной утечки определяется согласно соответствующим актам.

Обратите внимание

Согласно «Схемы балансового разграничения» у «Потребителя» на балансе находится участок теплосети от места присоединения — тепловой камеры ТК- 2 до дома № 4 условным диаметром Ду65, длина — 118,2 п.м.

Тип прокладки — проходной канал.

Определим по формуле нормативные значения среднегодовых тепловых потерь для этой тепловой сети:

  • β — коэффициент, учитывающий местные тепловые потери, потери опор, арматуры, компенсаторов. Определяется согласно СНиП 2.04.07 — 86. Для нашего случая β = 1,2;
  • L — длина трубопровода (участка тепловой сети);
  • qн = qп + qз — нормативные значения удельных тепловых потерь двухтрубных водяных тепловых сетей при прокладке в проходном канале и количестве часов работы за год меньше 5000;
  • 1 ккал / ч = 1,163 Вт.

Согласно графику температур в тепловых сетях 105°С — 70°С среднегодовые температуры теплоносителя (воды) в водяных тепловых сетях принимаем:

Среднегодовая температура воды в системе трубопроводов:

Потери тепловой энергии через изоляцию трубопроводов

Данный расчет отображает нормативные значения потерь, которые не должны превышаться, если изоляция трубопроводов подбиралась в соответствии со СНиП. Реальные значения могут отличаться от нормативных.

Если выполнить утепление трубопроводов IZOVOL или другими современными изоляционными материалами теплопотери через изоляцию будут очень низкими.

Для точного расчета потерь необходимо использовать метод основанный на алгоритме расчета прохождения тепла через цилиндрическую стенку.

Для участка Ду65 длиной 118,2 п.м.:

qн=(29+17)/1,163=39,66 Ккал /м ч (СНиП 2.04.14–88, приложение 4, табл. 4);

Нормированные значения месячных тепловых потерь через изоляцию трубопроводов для тепловой сети вычисляем:

  • n — продолжительность работы сети в данном месяце, час;
  • Qн ср.р — Гкал/ч.

Расчет тепловых потерь в тепловых сетях при транспортировке тепловой энергии
Потери тепловой энергии через изоляцию трубопроводов.Данный расчет отображает нормативные значения потерь, которые не должны превышаться, если изоляция трубопроводов подбиралась в соответствии со СНиП.

Источник: teplokom.com.ua

Здравствуйте, друзья! Расчет тепловых потерь трубопроводами отопления является важным и нужным расчетом, так как позволяет в цифрах определить количество тепла, теряемого в трубах отопления.

Также этот расчет важен по той причине, что теплоснабжающие организации включают потери тепла через трубопроводы в оплату теплоэнергии, в том случае если прибор учета тепловой энергии не находится на границе балансовой принадлежности, а от границы раздела до прибора учета тепла есть участки теплотрассы на балансе потребителя тепла.

Вообще, надо сказать, что расчет этот довольно трудоемкий. Ниже приведен пример расчета тепловых потерь трубопроводами отопления. Расчет производится согласно Приказа Министерства энергетики РФ от 30 декабря 2008 г.

N 325 «Об утверждении порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя» и методических указаний по составлению энергетической характеристики для систем транспорта тепловой энергии по показателю «тепловые потери» СО 153-34.20.523-2003, Часть 3.

Изоляционный материал: скорлупы минераловатные оштукатуренные,

δ- толщина изоляции = 0,05 м,

α – коэффициент теплоотдачи от изоляции трубопровода к воздуху канала, принимается согласно приложению 9 СНиП 2.04.14-88 равным 8 Вт/(м2 °С),

αв – коэффициент теплоотдачи от воздуха к грунту, принимается согласно приложению 9 СНиП 2.04.14-88 равным 8 Вт/(м2 °С),

H – глубина заложения до оси трубопроводов, м,

Ø – наружный диаметр трубопровода = 0,076 м,

L – длина трассы = 60 м,

b – ширина канала теплосети = 0,9 м,

h — высота канала теплосети = 0,45 м,

tпср.г. – средняя за отопительный сезон температура теплоносителя в подающем трубопроводе = 65,2 °С,

Важно

tоср.г — средняя за отопительный сезон температура теплоносителя в обратном трубопроводе= 48,5 °С,

tгрср.г — среднегодовая температура грунта = 4,5 °С,

λгр – коэффициент теплопроводности грунта = 2,56 Вт/(м °С).

Коэффициент теплопроводности изоляции:

λиз = 0,069+0,00019*((56,85+40)/2) =0,07820075 Вт / (м °С).

Термическое сопротивление теплоотдаче от поверхности изоляции в воздушное пространство:

Rвозд = 1 / (π * α * (Ø + 2δ)) = 1 / (π * 8 * (0,076 + 2 * 0,05)) = 0,2262 (м °С) / Вт.

Эквивалентный диаметр сечения канала в свету:

Øэкв. = 2 * h * b / (h + b) = 2 * 0,45 * 0,9 / (0,45 + 0,9) = 0,6 м.

Термическое сопротивление теплоотдаче от воздуха в канале к грунту:

Rвозд.кан = 1 / (π * αв * Øэкв.) = 1 / (π * 8 * 0,6) = 0,06631456 (м °С) / Вт.

Термическое сопротивление массива грунта:

Rгр = (ln (3,5 * (Н / h) * (h / b) 0,25) / (λгр * (5,7 + 0,5 * b / h)) = (ln (3,5 * (1/ 0,45) * (0,45 / 0,9) 0,25) / (2,56 * (5,7 + 0,5 * 0,9 / 0,45)) = 0,109390664 (м °С) / Вт.

Температура воздуха в канале:

tкан = (tпср.г./( Rиз + Rвозд) + tоср.г/( Rиз + Rвозд) + tгрср.г/( Rвозд.кан + Rгр)) / (1/( Rиз + Rвозд) + 1/( Rиз + Rвозд) + 1/( Rвозд.кан + Rгр)) = (65,2/(1,1397+0,2262) + 48,5/(1,1397 + 0,02262) + 4,5/(0,066 + 0,109)) / (1/(1,1397 + 0,2262) + 1/(1,1397 + 0,2262) + 1/(0,066 + 0,109)) = 15,195 °С.

Среднегодовые часовые удельные тепловые потери qр (Вт / м):

qр = (tкан — tгрср.г) / (Rвозд.кан + Rгр) = (15,195 – 4,5) / (0,066 + 0,109) = 61,1 Вт = 52,55 ккал/час.

Часовые тепловые потери при среднегодовых условиях работы тепловой сети:

Qнорм ср.г. = Σ (qр *L *ß) * 10-6 , Гкал/час,

где ß – коэффициент местных потерь (1,2 для Ø < 150 мм);

Qнорм ср.г. = 52,55 *60 *1,2 * 10-6 = 0,0038 Гкал/час.

Количество дней : (n)

В мае принята 1-я половина – 15 дней.

В сентябре принята 2-я половина – 15 дней

Qиз мес = Qнормср.г. *(( tпср.м + tоср.м — 2* tгрср.м) / (tпср.г + tоср.г – 2* tгрср.г)) * 24 * n.

Qиз сентябрь = 0,0038 * ((65 + 51,9 – 2 * 13,6) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 15 = 1,17 Гкал;

Совет

Qиз октябрь = 0,0038 * ((65 + 51,4 – 2 * 8,9) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 31 = 2,5 Гкал;

Qиз ноябрь = 0,0038 * ((65 + 50– 2 * 5,1) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 30 = 2,74 Гкал;

Qиз декабрь = 0,0038 * ((79 + 56,2– 2 * 3,0) / (65,2 + 48,5 – 2 * 4,5)) * 24 * 31 = 3,5 Гкал;

Qиз январь = 0,0038 * ((75,3 + 54,2– 2 * 1,6) / (65,2 + 48,5 – 2*4,5)) * 24 * 31 = 3,4 Гкал;

Qиз февраль = 0,0038 * ((80,2 + 56,9– 2 * 0,9) / (65,2 + 48,5 – 2*4,5)) * 24 * 28 = 3,3 Гкал;

Qиз март = 0,0038 * ((65 + 49,6– 2 * 0,5) / (65,2 + 48,5 – 2*4,5)) * 24 * 31 = 3,1 Гкал;

Qиз апрель = 0,0038 * ((65 + 51,3– 2 * 0,9) / (65,2 + 48,5 – 2*4,5)) * 24 * 31 = 3,0 Гкал;

Qиз май = 0,0038 * ((65 + 52– 2 * 4,1) / (65,2 + 48,5 – 2*4,5)) * 24 * 15 = 1,42 Гкал.

Суммарные потери тепловой энергии через изоляцию

Совсем недавно я выпустил программу для расчета потерь в тепловых сетях, где максимально автоматизировал процесс расчета теплопотерь трубопроводами отопления.

Мою программу расчета теплопотерь в тепловых сетях можно

=======>>> посмотреть здесь

Программу можно получить и напрямую, написав мне через форму обратной связи на моем сайте. В этом случае предусмотрена скидка.

Расчет потерь в тепловых сетях, Потери в тепловых сетях, Блог инженера теплоэнергетика
Как рассчитываются потери в тепловых сетях

Источник: teplosniks.ru

Проведен анализ возможности измерения потерь в тепловых сетях . Предложен способ совершенствования существующей структуры норм потерь через изоляцию трубопроводов путем учета их удельной (на один метр длины трубопровода) теплопроводности. Даны рекомендации по расчёту нормативных потерь тепла через изоляцию трубопроводов тепловых сетей .

Читайте также:  Утепление плоской кровли внутри и снаружи: технология (фото и видео)

CALCULATION OF STANDARD LOSSES OF HEAT THROUGH ISOLATION OF PIPELINES OF THERMAL NETWORKS

The analysis of possibility of measurement of losses in thermal networks is carried out.

The way of perfection of existing structure of norms of losses through isolation of pipelines by their account specific (on one meter of length of the pipeline) is offered heat conductivity.

Recommendations about calculation of standard losses of heat through isolation of pipelines of thermal networks are made.

Обратите внимание

Расчет нормативных потерь тепла через изоляцию трубопроводов тепловых сетей – тема научной статьи по жилищно-коммунальному хозяйству, домоводству и бытовому обслуживанию читайте бесплатно текст научно-исследовательской работы в электронной библиотеке КиберЛенинка
Проведен анализ возможности измерения потерь в тепловых сетях. Предложен способ совершенствования существующей структуры норм потерь через изоляцию трубопроводов путем учета их удельной (на один метр длины трубопровода) теплопроводности. Даны рекомендации по расчёту нормативных потерь тепла через изоляцию трубопроводов тепловых сетей.

Источник: cyberleninka.ru

Различают два вида потерь в тепловых сетях: с тепловыделением и от утечек теплоносителя, которые определяются конструкцией сети, ее состоянием и условиями эксплуатации.

Потери с тепловыделением. Существующие нормы потерь тепла в трубопроводах определяются значениями среднегодовых температур теплоносителя и окружающей среды.

Значения удельных потерь тепла при максимальных и других заданных температурах теплоносителя и соответствующей температуре окружающей среды определяют по формуле (4.1)

q1 = , ккал/(ч м), (4.1)

где q1норм — нормы потери тепла на 1 м теплопровода в зависимости от диаметра, способа прокладки и теплоносителя (определяются по прил. 5 и 6) при среднегодовой температуре теплоносителя tcp, ккал/(ч м);

q1 — удельные потери тепла 1 м теплопровода при заданной температуре теплоносителя t, ккал/(ч м);

tокр. ср. г — среднегодовая температура окружающей среды, при которой заданы нормы потерь тепла, °С;

tокр. ср — фактическая среднегодовая температура окружающей среды, °С.

При подземных прокладках в непроходных каналах температура окружающей среды принимается равной температуре воздуха в канале.

При подземной бесканальной прокладке температура окружающей среды равна температуре грунта на глубине заложения трубопровода. При надземной прокладке температура окружающей среды равна температуре наружного воздуха.

Важно

Температурный расчетный (максимальный) график подачи теплоносителя от ЦТП и котельных для прямых и обратных магистралей равен соответственно:

tподтн рас = 95 °С и tобртн рас = 70 °С.

Температурный график среднегодовых температур подачи теплоносителя для прямых и обратных магистралей равен соответственно:

tподтн ср = 59 °С и tобртн ср = 47 °С.

Для трубопроводов надземной прокладки температура окружающей среды, при которой заданы нормы потерь тепла, равна среднегодовой температуре окружающей среды за отопительный период.

Для трубопроводов подземной прокладки в непроходных каналах температура окружающей среды, при которой заданы нормы потерь тепла, принимается равной:

tпкокр. ср. г =

Для трубопроводов подземной не канальной прокладки температура, при которой заданы нормы потерь тепла, равна среднегодовой температуре грунта и составляет для средней полосы России (на глубине 0,8 м):

tпбокр. ср. г = °С.

Расчетные (минимальные) температуры окружающей среды равняются:

для трубопроводов надземной прокладки

для трубопроводов подземной прокладки в непроходных каналах

tнокр.ср = 40 °С; tпкокр. рас =

для трубопроводов подземной бесканальной прокладки

(средняя зимняя температура грунта на глубине 0,8 м).

С учетом вышеизложенного, формулы для определения потерь тепла тепловыделением приведены в прил. 7.

Для расчета максимальных часовых потерь используются максимальные удельные потери q1макс, для расчета средних часовых потерь -средние удельные потери qlcp.

Таким образом, исходными данными для расчета потерь тепла тепловыделением рассматриваемых сетей являются удельные потери тепла и суммарные длины участков трасс с учетом способов прокладки.

Потери тепла с утечкой теплоносителя. Среднечасовая величина утечки за год принимается равной 0,25% от объема воды в трубопроводах тепловой сети и присоединенных к ним местных систем отопления зданий.

Расчетная (максимальная) часовая величина утечки, учитывая возможные колебания в течение года в зависимости от режима работы системы, принимается равной 0,5% от всего объема теплоносителя. Объем воды в трубопроводах тепловой сети определяется в зависимости от их протяженности и диаметра по сводной специфики.

Удельный объем воды в трубопроводах в зависимости от диаметра приведен в прил. 8. Для трубопровода с другим диаметром удельный объем можно определить по выражению

V1тр = , м3/км, (4.2)

Ду — условный диаметр, мм.

Совет

Удельный объем воды в системах отопления зданий по всему объекту на 1 Гкал/ч суммарного расчетного расхода тепла принимается равным:

для жилых районов — 30 м ;

для промышленных предприятий — 15 м3.

Годовые потери тепла с тепловыделением и утечкой за отопительный сезон, Гкал, рассчитываются по формуле

= ( + ) tот 20 10-6 (4.3)

где tот продолжительность отопительного сезона.

Расчет потерь тепла в тепловых сетях
Различают два вида потерь в тепловых сетях: с тепловыделением и от утечек теплоносителя, которые определяются конструкцией сети, ее состоянием и условиями эксплуатации. Потери с тепловыделением. Существующие нормы потерь тепла в

Источник: students-library.com

Читайте также  Расчёт теплопотерь через ограждающие конструкцииПоделитесь статьей в соц. сетях: <\p>

Источник: https://lucheeotoplenie.ru/raschet-otopleniya/raschet-teplovyh-poter-v-teplovyh-setyah.html

Определение расчетных расходов теплоносителя

Расчетный расход сетевой воды на отопление

Расчетный расход сетевой воды, кг/ч, для определения диаметров труб водяных тепловых сетей при качественном регулировании отпуска теплоты следует определять:

GO, (15)

где : GO-тепловая нагрузка на отопление, (табл. 2)Вт;

С – удельная теплоемкость воды, С= 4,187 кДж/кгС,

t11- температура теплоносителя сетевой воды при to;

t201- температура обратной воды при to.

Расчетный расход сетевой воды определяется для каждого потребителя:

1)Колледж 3-х этажный на 1100 мест учащихся : Qo=151934

GO==1628кг/ч=1628/1000=1,628т/ч

2)Детский сад 2-х этажный на 250 мест : Qo=98704

GO==1058кг/ч=1,058т/ч

3) ж/д 9 этажный 2 секции : Qo=327561

GO==3510кг/ч=3,510т/ч

4) ж/д 9 этажный 4 секции : Qo=619709

GO==6640кг/ч=6,640т/ч

5) ж/д 9 этажный 4 секции : Qo=619709

GO==6640кг/ч=6,640т/ч

6) ж/д 9 этажный 4 секции : Qo=619709

GO==6640кг/ч=6,640т/ч

Расчетный расход сетевой воды на вентиляцию

Расчетный расход сетевой воды, кг/ч определяется по формуле :

GO, (16)

где : Qv – тепловая нагрузка на вентиляцию, Вт;

С-4,189 кДж/0C.

Расчетный расход сетевой воды на вентиляцию определяется только для общественных зданий (школы, детского сада и т. д.)

1)колледж 3-х этажный на 1100 мест учащихся : Qo=21315

GO==229кг/ч=229/1000=0,229т/ч

2)Детский сад 2-х этажный на 250 мест : Qo=20160

GO==216кг/ч=0,216т/ч.

2.5 Гидравлический расчет тепловых сетей Т1и Т2 с нагрузкой на отопление и вентиляцию

Целью гидравлического расчета является определение диаметра трубопровода тепловой сети, потери давления на участках тепловой сети и по всей трассе, скоростью движения теплоносителя.

Потери давления на участках трубопровода определяется по формуле, Па:

∆Р=∆РMC+∆РTR , где: (17)

∆РMC-потери давления в местных сопротивлениях, Па;

∆РTР –потери давления на трения по длине участка, Па;

∆РTР=∆РTР l, где: (18)

∆РTР- удельное падение давления на участке, Па;

l- длина участка трубопровода, м.

Потеря давления в местных сопротивлениях определяется по формуле:

∆РМС=Σ, где: (19)

Σ — сумма коэффициентов местных сопротивлений на участке;

Y-удельный вес теплоносителя, кг /м3;

V- скорость движения теплоносителя, м/с.

Скорость эквивалентной длины местных сопротивлений формула суммарной величины потерь принимает вид:

∆Р=RЛ* lпр (20)

Iпр= l+ lэкв, где: (21)

lэкв-эквивалентная длина местных сопротивлений [Приложение 6].

Методика выполнения гидравлического расчета:

1) составить расчетную схему трубопровода Т1;

2) с плана тепловой сети перенести на схему необходимые размеры трубопроводов;

3) проставить расходы теплоносителя Goи Gv для каждого потребителя;

4) раставить все местные сопротивления (задвижки, переходняки, тройники, компенсаторы, отводы);

5) компенсаторы расположить междунеподвижными опорами.Неподвижные опоры установить в каждой тепловой камере и через 80 – 100 метров на прямых учкстках сети использовать узлы естественных поворотов трассы, как самокомпенсаторы;

6) магистраль выбирается, т. е. направление от источника тепла до оного из потребителей,который характеризуется наименьшим удельным падением давления, т. е. самый удаленный;

7) разбить схему на расчетные участки(расчетный участок принимается от тройника до тройника);

8) Задаются удельным падением давления в основной магистрали в пределах 30-80 Па;

Обратите внимание

9)для расчетной магистрали определить диаметр каждого участка, ориентируясь на G, RЛ [Приложение 5].

Данные расчета заносим в таблицу. № 4.

Таблица 4 – Гидравлический расчет тепловой сети с нагрузкой на отопление и вентиляцию.

№ уч-ка G т/ч I м ДН×S мм RЛ Па/м V м/с IЭКВ ΣIЭКВ LПР=I+ ΣIЭКВ ∆P=RЛ×LПР ∆H=∆P/104 м
задв. пр-д ком-р трой-к отвод
Цтп-1 133×4 45,1 0,67 2,2 0,47 6,6 9,27 19,27 0,8691
1-2 26,54 133×4 41,9 0,62 6,6 6,6 36,6 0,1534
2-3 19,92 133×4 24,8 0,47 6,6 6,6 26,6 0,66
3-4 18,07 108×4 72,9 0,7 0,33 9,8 4,9 15,03 65,03 0,4741
4-5 11,43 108×4 29,1 0,44 9,8 9,8 89,8 0,2614
5-6 4,98 76×3,5 36,2 0,39 0,2 0,2 22,2 0,0804
6-7 3,32 76×3,5 17,3 0,26 6,8 6,8 26,8 0,0464
7-8 1,66 45×2,5 76,8 0,39 0,1 0,1 22,1 0,1698

Продолжение таблицы 4

Ответвление

1-9 10,15 89×3,5 63,8 0,58 10,2 0,26 5,1 15,56 45,56 0,2907
9-10 1,274 45×2,5 45,1 0,3 7,8 0,1 7,9 77,9 0,3514
10-11 3,5 76×3,5 19,2 0,28 9,6 0,2 6,8 17,6 137,6 0,2642

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Источник: https://megalektsii.ru/s19602t3.html

Определение расчетных расходов теплоносителя

Расчетный расход сетевой воды на систему отопления (т/ч), присоединенную по зависимой схеме, можно определить по формуле:

Рисунок 346. Расчетный расход сетевой воды на СО

  • где Qо.р.- расчетная нагрузка на систему отопления, Гкал/ч;
  • τ1.р.- температура воды в подающем трубопроводе тепловой сети при расчетной температуре наружного воздуха для проектирования отопления, ° С;
  • τ2.р.- температура воды в обратном трубопроводе системы отопления при расчетной температуре наружного воздуха для проектирования отопления, °С;

Расчетный расход воды в системе отопления определяется из выражения:

Рисунок 347. Расчетный расход воды в системе отопления

  • τ3.р.- температура воды в подающем трубопроводе системы отопления при расчетной температуре наружного воздуха для проектирования отопления, ° С;

Относительный расход сетевой воды Gотн. на систему отопления:

Рисунок 348. Относительный расход сетевой воды на СО

  • где Gc.- текущее значение сетевого расхода на систему отопления, т/ч.

Относительный расход тепла Qотн. на систему отопления:

Рисунок 349. Относительный расход тепла на СО

  • где Qо.- текущее значение расхода теплоты на систему отопления, Гкал/ч
  • где Qо.р.- расчетное значение расхода теплоты на систему отопления, Гкал/ч

Расчетный расход теплоносителя в системе отопления присоединенной по независимой схеме:

Рисунок 350. Расчетный расход на СО по независимой схеме

  • где: t1.р, t2.р.- расчетная температура нагреваемого теплоносителя (второй контур) соответственно на выходе и входе в теплообменный аппарат, ºС;

Расчетный расход теплоносителя в системе вентиляции определяется по формуле:

Рисунок 351. Расчетный расход на СВ

  • где: Qв.р.- расчетная нагрузка на систему вентиляции Гкал/ч;
  • τ2.в.р.- расчетная температура сетевой воды после калорифера системы вентиляции, ºС.

Расчетный расход теплоносителя на систему горячего водоснабжения (ГВС) для открытых систем теплоснабжения определяется по формуле:

Рисунок 352. Расчетный расход на открытые системы ГВС

Расход воды на горячее водоснабжение из подающего трубопровода тепловой сети:

Рисунок 353. Расход на ГВС из подающего

  • где: β- доля отбора воды из подающего трубопровода, определяемая по формуле:Рисунок 354. Доля отбора воды из подающего

Расход воды на горячее водоснабжение из обратного трубопровода тепловой сети:

Рисунок 355. Расход на ГВС из обратного

Расчетный расход теплоносителя (греющей воды) на систему ГВС для закрытых систем теплоснабжения при параллельной схеме включения подогревателей на систему горячего водоснабжения:

Рисунок 356. Расход на ГВС 1 контура при параллельной схеме

  • где: τ1.и.- температура сетевой воды в подающем трубопроводе в точке излома температурного графика,ºС;
  • τ2.т.и.- температура сетевой воды после подогревателя в точке излома температурного графика (принимается = 30 ºС);

Расчетная нагрузка на ГВС

При наличии баков аккумуляторов

Рисунок 357.

При отсутствии баков аккумуляторов

Рисунок 358.

Источник: https://www.politerm.com/zuluthermo/webhelp/math_q.html

Тепловой расчёт системы отопления: принцип расчета нагрузки

В частном доме нужно всё делать своими (специалиста) «руками», в том числе рассчитывать, проектировать, покупать и монтировать систему отопления.

Дабы начать организацию коммуникаций в доме необходимо произвести тепловой расчёт системы отопления. Ниже разъясняется каким образом и зачем это делается.

Тепловой расчёт отопления

Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении. Основные задачи расчёта и проектирования системы отопления:

  • наиболее достоверно определить тепловые потери
  • определить количество и условия использования теплоносителя
  • максимально точно подобрать элементы генерации, перемещения и отдачи тепла
Читайте также:  Эковата или минвата: что лучше?

При постройке системы отопления необходимо первоначально произвести сбор разнообразных данных о помещении/здании, где будет использоваться система отопления. После выполнить расчёт тепловых параметров системы, проанализировать результаты арифметических операций. На основе полученных данных подобрать компоненты системы отопления с последующей закупкой, установкой и вводом в эксплуатацию.

Отопление — это многокомпонентная система обеспечения утверждённого температурного режима в помещении/здании.

Являет собой обособленную часть комплекса коммуникаций современного жилищного помещения

Примечательно, что указанная методика теплового расчёта позволяет достаточно точно вычислить большое количество величин, которые конкретно описывают будущую систему отопления. В результате теплового расчёта в наличии будет следующая информация:

  • число тепловых потерь, мощность котла;
  • количество и тип тепловых радиаторов для каждой комнаты отдельно;
  • гидравлические характеристики трубопровода;
  • объём, скорость теплоносителя, мощность насоса.

Тепловой расчёт — это не теоретические наброски, а вполне точные и обоснованные итоги, которые рекомендуется использовать на практике при подборе компонентов системы отопления.

Температурные режимы помещений

Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них. Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.

Для помещений разнообразного назначения существуют эталонные стандарты температурных режимов жилых и нежилых помещений. Эти нормы закреплены в так называемых ГОСТах

Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.

Согласно регламенту санитарных нормативов и правил есть различие в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, а вот комнатная температура воздуха в зимний период обеспечивается системой отопления. То бишь нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате. Для нежилых помещений офисного типа площадью до 100 м2:

  • оптимальная температура воздуха 22-24°С
  • допустимое колебание 1°С

Для помещений офисного типа площадью более 100 м2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

Комфортная температура помещения у каждого человека «своя».

Кто-то любит чтобы было очень тепло в комнате, кому-то комфортно когда в комнате прохладно — это всё достаточно индивидуально

Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д.

существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов. И всё же для конкретных помещений квартиры и дома имеем:

  • жилая, в том числе детская, комната 20-22°С, допуск ±2°С
  • кухня, туалет 19-21°С, допуск ±2°С
  • ванная, душевая, бассейн 24-26°С, допуск ±1°С
  • коридоры, прихожие, лестничные клетки, кладовые 16-18°С, допуск +3°С

Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п.

Расчёт теплопотерь в доме

Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является «стремление» создания температурного равновесия между двумя термодинамическими системами.

Например, первая система — окружающая среда с температурой -20°С, вторая система — здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

Однозначно можно сказать, что температура окружающей среды зависит от широты на которой расположен частный дом.

А разница температур влияет на количество утечек тепла от здания

Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры).

Для обычной квартиры этот процесс не так «заметен» в сравнении с частным домом, поскольку квартира находиться внутри здания и «соседствует» с другими квартирами. В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени «уходит» тепло.

Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.

Итак, объём утечек тепла от здания вычисляется по следующей формуле:

Q=Qпол+Qстена+Qокно+Qкрыша+Qдверь+…+Qi

Важно

где Qi — объём теплопотерь от однородного вида оболочки здания. Каждая составляющая формулы рассчитывается по формуле:

Q=S*∆T/R

где Q – тепловые утечки (Ватты), S – площадь конкретного типа конструкции (м2), ∆T – разница температур воздуха окружающей среды и внутри помещения (°C), R – тепловое сопротивление определённого типа конструкции (м2*°C/Вт).

Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц. Кроме того, тепловое сопротивление можно получить с помощью следующего соотношения:

R=d/k

где R – тепловое сопротивление ((м2*К)/Вт), k – коэффициент теплопроводности материала (Вт/(м2*К)), d – толщина этого материала (м).

В старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак.

Если утеплить чердачное пространство и крышу, то общие потери тепла от дома можно значительно уменьшить

В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей.

Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.

Определение мощности котла

Для поддержки разницы температур между окружающей средой и температурой внутри дома необходима автономная система отопления, которая поддерживает нужную температуру в каждой комнате частного дома.

Базисом системы отопления является котел: жидко или твердотопливный, электрический или газовый — на данном этапе это неважно. Котел — это центральный узел системы отопления, который генерирует тепло. Основной характеристикой котла есть его мощность, а именно скорость преобразования количество теплоты за единицу времени.

Произведя расчеты тепловой нагрузки на отопление получим требуемую номинальную мощность котла. Для обычной многокомнатной квартиры мощность котла вычисляется через площадь и удельную мощность:

Ркотла=(Sпомещения*Рудельная)/10

Совет

где Sпомещения — общая площадь отапливаемого помещения, Руделльная — удельная мощность относительно климатических условий. Но эта формула не учитывает тепловые потери, которых достаточно в частном доме. Существует иное соотношение, которое учитывает этот параметр:

Ркотла=(Qпотерь*S)/100

где Ркотла — мощность котла (Вт), Qпотерь — потери тепла, S — отапливаемая площадь (м2).

В большинстве систем отопления частных домов рекомендуется обязательно использовать расширительный резервуар, в котором будет храниться запас теплоносителя. Каждый частный дом нуждается в горячем водоснабжении

Дабы предусмотреть запас мощности котла с учётом подогрева воды для кухни и ванной комнаты нужно в последнюю формулу добавить коэффициент запаса К:

Ркотла=(Qпотерь*S*К)/100

где К — будет равен 1.25, то есть расчётная мощность котла будет увеличена на 25%. Таким образом, мощность котла предоставляет возможность поддерживать нормативную температуру воздуха в комнатах здания, а также иметь начальный и дополнительный объём горячей воды в доме.

Особенности подбора радиаторов

Стандартными компонентами обеспечения тепла в помещении являются радиаторы, панели, системы «тёплый» пол, конвекторы и т. д. Самыми распространёнными деталями отопительной системы есть радиаторы.

Тепловой радиатор — это специальная полая конструкция модульного типа из сплава с высокой теплоотдачей. Он изготавливается из стали, алюминия, чугуна, керамика и других сплавов. Принцип действия радиатора отопления сводится к излучению энергии от теплоносителя в пространство помещения через «лепестки».

Алюминиевый и биметаллический радиатор отопления пришёл на смену массивным чугунным батареям.

Простота производства, высокая теплоотдача, удачная конструкция и дизайн сделали это изделие популярным и распространённым инструментом излучения тепла в помещении

Существует несколько методик расчёта количества секций радиатора в комнате. Нижеприведённый перечень способов отсортирован в порядке увеличения точности расчёта.

  1. По площади. N=(S*100)/C, где N — количество секций, S — площадь помещения (м2), C — теплоотдача одной секции радиатора (Вт, берётся из тех паспорта или сертификата на изделие), 100 Вт — количество теплового потока, которое необходимо для нагрева 1 м2 (эмпирическая величина). Возникает вопрос: а каким образом учесть высоту потолка комнаты?
  2. По объёму. N=(S*H*41)/C, где N, S, C — аналогично. Н — высота помещения, 41 Вт — количество теплового потока, которое необходимо для нагрева 1 м3 (эмпирическая величина).
  3. По коэффициентам. N=(100*S*к1*к2*к3*к4*к5*к6*к7)/C, где N, S, C и 100 — аналогично. к1 — учёт количества камер в стеклопакете окна комнаты, к2 — теплоизоляция стен, к3 — соотношение площади окон к площади помещения, к4 — средняя минусовая температура в наиболее холодную неделю зимы, к5 — количество наружных стен комнаты (которые «выходят» на улицу), к6 — тип помещения сверху, к7 — высота потолка.

Это максимально точный вариант расчёта количества секций. Естественно, что округление дробных результатов вычислений производится всегда к следующему целому числу.

Гидравлический расчёт водоснабжения

Безусловно, «картина» расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.

Реальный объём теплоносителя рекомендуется рассчитывать через суммирование всех полостей в системе отопления. При использовании одноконтурного котла — это оптимальный вариант.

При применении двухконтурных котлов в системе отопления необходимо учитывать расходы горячей воды для гигиенических и иных бытовых целей

Расчет объема воды, подогреваемой двухконтурным котлом для обеспечения жильцов горячей водой и нагрева теплоносителя, производится путем суммирования внутреннего объема отопительного контура и реальных потребностей пользователей в нагретой воде.

Объём горячей воды в отопительной системе рассчитывается по формуле:

W=k*P

Обратите внимание

где W — объём носителя тепла, P — мощность котла отопления, k — коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон от 10 до 15 литров). В итоге конечная формула выглядит так:

W = 13.5*P

Скорость теплоносителя — заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе. Эта величина помогает оценить тип и диаметр трубопровода:

V=(0.86*P*μ)/∆T

где P — мощность котла, μ — КПД котла, ∆T — разница температур между подаваемой водой и водой обратном контуре.

Резюмируя вышеизложенные способы расчёта характеристик, в итоге будут доступны реальные результаты вычислений, которые являются «фундаментом» будущей системы отопления.

Пример теплового расчёта

В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, «зимний сад» и подсобные помещения.

Фундамент из монолитной железобетонной плиты (20 см), наружные стены — бетон (25 см) со штукатуркой, крыша — перекрытия из деревянных балок, кровля — металлочерепица и минеральная вата (10 см)

Габариты здания. Высота этажа 3 метра. Малое окно фасадной и тыльной части здания 1470*1420 мм, большое окно фасада 2080*1420 мм, входные двери 2000*900 мм, двери тыльной части (выход на террасу) 2000*1400 (700 + 700) мм.

Общая ширина постройки 9.5 м2, длинна 16 м2. Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня. Для точного расчёта теплопотерь на стенах из площади внешних стен нужно вычесть площадь всех окон и дверей — это совсем другой тип материала со своим тепловым сопротивлением

Начинаем с расчёта площадей однородных материалов:

  • площадь пола 152 м2
  • площадь крыши 180 м2 (учитывая высоту чердака 1.3 метра и ширину прогона — 4 метра)
  • площадь окон 3*1.47*1.42+2.08*1.42=9.22 м2
  • площадь дверей будет равна 2*0.9+2*2*1.4=7.4 м2

Площадь наружных стен будет равна 51*3-9.22-7.4=136.38 м2. Переходим к расчёту теплопотерь на каждом материале:

  • Qпол=S*∆T*k/d=152*20*0.2/1.7=357.65 Вт
  • Qкрыша=180*40*0.1/0.05=14400 Вт
  • Qокно=9.22*40*0.36/0.5=265.54 Вт
  • Qдвери=7.4*40*0.15/0.75=59.2 Вт

А также Qстена эквивалентно 136.38*40*0.25/0.3=4546. Сумма всех теплопотерь будет составлять 19628.4 Вт. В итоге подсчитаем мощность котла:

  • Ркотла=Qпотерь*Sотаплив_комнат*К/100=
  • 19628.4*(10.4+10.4+13.5+27.9+14.1+7.4)*1.25/100=19628.4*83.7*1.25/100=20536.2=21 кВт

Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.

  • N=(100*к1*к2*к3*к4*к5*к6*к7)/C=(100*10.4*1.0*1.0*0.9*1.3*1.2*1.0*1.05)/180=8.5176=9

Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт. Переходим к расчёту количества теплоносителя в системе:

  • W=13.5*P=13.5*21=283.5 литров

Скорость теплоносителя будет составлять:

  • V=(0.86*P*μ)/∆T=(0.86*21000*0.9)/20=812.7 литров

В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен 2.87 раза в один час.

Выводы и полезное видео по теме

Простой расчёт отопительной системы для частного дома представлен в следующем обзоре:

Все тонкости и общепринятые методики просчёта теплопотерь здания показаны ниже:

Ещё один вариант расчёта утечек тепла в типичном частном доме:

В этом видео рассказывается об особенностях циркуляции носителя энергии для обогрева жилища:

Источник: http://sovet-ingenera.com/otoplenie/project/teplovoj-raschyot-sistemy-otopleniya.html

Ссылка на основную публикацию
Adblock
detector