Расчет мощности радиатора отопления: формула

Расчет радиаторов отопления и необходимой тепловой мощности – Stroim24.info

Как выполнить расчет радиаторов отопления в квартире? Какое количество секций будет минимально необходимым при известной площади помещения?

О простых и относительно сложных способах расчета — эта статья.

Отложим в сторону газовый ключ и болгарку. Сегодня наш инструмент — калькулятор.

Дисклеймер

Эта статья ориентирована не на инженеров-теплотехников, а на владельцев квартиры или частного дома, которые собираются своими руками смонтировать систему отопления. Раз так — инструкция по расчету должна быть простой и понятной.

Мы не станем использовать сложные формулы и такие понятия, как «тепловой поток» и «термическое сопротивление стен», постаравшись предельно упростить подсчеты.

Общие положения

Любой простой способ расчета имеет довольно большую погрешность. Однако с практической стороны для нас важно обеспечить гарантированно достаточную тепловую мощность. Если она окажется больше необходимой даже в пик зимней стужи — что с того?

В квартире, где отопление оплачивается по площади, жар костей не ломит; да и регулировочные дроссели и термостатические регуляторы температуры не являются чем-то очень редким и недоступным.

В случае частного дома и собственного котла цена киловатта тепла нам хорошо известна, и, казалось бы, избыточное отопление ударит по карману. Однако на практике это не так. Все современные газовые и электрокотлы для отопления частного дома снабжаются термостатами, которые регулируют теплоотдачу в зависимости от температуры в помещении.

Обратите внимание

Термостат не даст котлу потратить лишнее тепло.

Даже если наш расчет мощности радиаторов отопления даст значительную ошибку в большую сторону — мы рискуем лишь стоимостью нескольких дополнительных секций.

Как рассчитать тепловую мощность отопительного прибора

Способ рассчитать мощность во многом зависит от того, о каком отопительном приборе идет речь.

  • Для всех без исключения электрических отопительных приборов эффективная тепловая мощность в точности равна их паспортной электрической мощности.Вспомните школьный курс физики: если не совершается полезная работа (то есть перемещение какого-либо объекта с ненулевой массой против вектора гравитации), вся потраченная энергия идет на нагрев окружающей среды.

Угадаете тепловую мощность прибора по его упаковке?

  • У большинства отопительных приборов от приличных производителей их тепловая мощность указывается в сопроводительной документации или на сайте изготовителя.Часто там можно обнаружить даже калькулятор расчета радиаторов отопления для определенного объема помещения и параметров отопительной системы.

Здесь есть одна тонкость: почти всегда производителем выполняется расчет теплоотдачи радиатора — батарей отопления, конвектора или фанкойла — для вполне конкретной разницы температур между теплоносителем и помещением, равной 70С. Для российских реалий такие параметры зачастую являются недостижимым идеалом.

Наконец, возможен простой, хоть и приблизительный, расчет мощности радиатора отопления по количеству секций.

Биметаллические радиаторы

Расчет биметаллических радиаторов отопления отталкивается от габаритных размеров секции.

Возьмем данные с сайта завода Большевик:

  • Для секции с межосевым расстоянием подводок 500 миллиметров теплоотдача равна 165 ватт.
  • Для 400-миллиметровой секции — 143 ватта.
  • 300 мм — 120 ватт.
  • 250 мм — 102 ватта.

10 секций с полуметром между осями подводок дадут нам 1650 ватт тепла.

Алюминиевые радиаторы

Расчет алюминиевых радиаторов отопления выполняется исходя из следующих значений (данные для итальянских радиаторов Calidor и Solar):

  • Секция с межосевым расстоянием 500 миллиметров отдает 178-182 ватта тепла.
  • При межосевом расстоянии 350 миллиметров теплоотдача секции уменьшается до 145-150 ватт.

Стальные пластинчатые радиаторы

А как выполнить расчет стальных радиаторов отопления пластинчатого типа? У них ведь нет секций, от количества которых может отталкиваться формула расчета.

Здесь ключевые параметры — опять-таки межосевое расстояние и длина радиатора. Кроме того, производители рекомендуют учитывать способ подключения радиатора: при разных способах врезки в отопительную систему нагрев и, следовательно, тепловая мощность тоже может различаться.

Чтобы не утомлять читателя обилием формул в тексте — просто отошлем его к таблице мощности модельного ряда радиаторов Korad.

Схема учитывает габариты радиаторов и тип подключения.

Чугунные радиаторы

И только здесь все предельно просто: все производящиеся в России чугунные радиаторы имеют одинаковое межосевое расстояние подводок, равное 500 миллиметрам, и теплоотдачу при стандартной дельте температур в 70С, равную 180 ваттам на секцию.

Полдела сделано. Теперь мы знаем, как рассчитать количество секций или отопительных приборов при известной необходимой тепловой мощности. Но откуда взять саму тепловую мощность, которая нам нужна?

Расчет тепловой мощности

Мы рассмотрим несколько способов расчета, учитывающих разное количество переменных.

По площади

Расчет по площади основан на санитарных нормах и правилах, в которых русским по белому сказано: один киловатт тепловой мощности должен приходиться на 10 м2 площади помещения (100 ватт на м2).

Чем ниже температура на улице, тем больше потери тепла.

Понятно, что метод дает весьма значительную погрешность:

  • Панорамное остекление в одну нитку явно даст большие теплопотери по сравнению со сплошной стеной.
  • Расположение квартиры внутри дома не учитывается, хотя понятно, что если рядом теплые стены соседних квартир — при одинаковом количестве радиаторов будет куда теплее, чем в угловой комнате, имеющей общую стену с улицей.
  • Наконец, главное: расчет верен для стандартной высоты потолков в доме советской постройки, равной 2,5 — 2,7 метра. Однако еще в начале 20-го века строились дома с высотой потолков в 4 — 4,5 метра, да и сталинки с трехметровыми потолками тоже потребуют уточненного расчета.

Давайте все-таки применим метод для расчета количества чугунных секций радиаторов отопления в комнате размером 3х4 метра, находящейся в Краснодарском крае.

Площадь равна 3х4=12 м2.

Необходимая тепловая мощность отопления — 12м2 х100Вт х0,7 районного коэффициента = 840 ватт.

При мощности одной секции в 180 ватт нам потребуется 840/180=4,66 секции. Число мы, понятно, округлим в большую сторону — до пяти.

Запас по тепловой мощности никогда не помешает. При необходимости можно просто прикрыть вентиля перед радиатором.

Простой расчет по объему

Не наш выбор.

Расчет по общему объему воздуха в помещении явно будет более точным уже потому, что учитывает разброс высоты потолков. Он тоже весьма прост: на 1 м3 объема необходимо 40 ватт мощности отопительной системы.

Давайте посчитаем необходимую мощность для нашей комнатки под Краснодаром с небольшим уточнением: она находится в сталинке 1960 года постройки с высотой потолка 3,1 метра.

Объем помещения равен 3х4х3,1=37,2 кубометра.

Соответственно радиаторы должны иметь мощность 37,2х40=1488 ватта. Учтем районный коэффициент 0,7: 1488х0,7=1041 ватт, или шесть секций чугунного лютого ужаса под окном. Почему ужаса? Внешний вид и постоянные течи между секциями через несколько лет эксплуатации восторга не вызывают.

Если же вспомнить, что цена чугунной секции выше, чем у алюминиевого или биметаллического импортного радиатора отопления — идея покупки такого отопительного прибора и впрямь начинает вызывать легкую панику.

Уточненный расчет по объему

Более точный расчет систем отопления выполняется с учетом большего числа переменных:

  • Количества дверей и окон. Усредненные потери тепла через окно стандартного размера — 100 ватт, через дверь — 200.
  • Расположение комнаты в торце или углу дома заставит нас использовать коэффициент 1,1 — 1,3 в зависимости от материала и толщины стен здания.
  • У частных домов используется коэффициент 1,5, поскольку куда выше потери тепла через пол и крышу. Сверху и снизу ведь не теплые квартиры, а улица…

Базовое значение — те же 40 ватт на кубометр и те же региональные коэффициенты, что и при расчете по площади комнаты.

Давайте выполним расчет тепловой мощности радиаторов отопления для комнаты с теми же габаритами, что и в предыдущем примере, но мысленно перенесем ее в угол частного дома в Оймяконе (средняя температура января -54С, минимум за время наблюдений — 82). Ситуация усугубляется дверью на улицу и окошком, из которого видны жизнерадостные оленеводы.

Базовую мощность с учетом только объема помещения мы уже выполнили: 1488 ватт.

Окно и дверь прибавят 300 ватт. 1488+300=1788.

Частный дом. Холодный пол и утечка тепла через крышу. 1788х1,5=2682.

Угол дома заставит нас применить коэффициент 1,3. 2682х1,3=3486,6 ватта.

К слову, в угловых комнатах отопительные приборы стоит монтировать на обе внешние стены.

Важно

Наконец, теплый и ласковый климат Оймяконского улуса Якутии приводит нас к мысли о том, что полученный результат можно умножить на региональный коэффициент 2,0. 6973,2 ватта требуется для обогрева маленькой комнатушки!

Расчет количества радиаторов отопления нам уже знаком. Общее количество чугунных или алюминиевых секций составит 6973,2/180=39 секций с округлением. При длине секции 93 миллиметра баян под окном будет иметь длину 3,6 метра, то есть едва поместится вдоль более длинной из стенок…

«- Десять секций? Хорошее начало!» — такой фразой житель Якутии прокомментирует это фото.

Заключение

Дополнительную информацию о расчете отопительных систем вы найдете в видео в конце статьи. Автор же напоследок хочет сделать официальное заявление: в Оймякон по своей воле — ни ногой. Теплых зим!

Поделитесь с друзьями в соц.сетях

Источник: https://stroim24.info/raschet-radiatorov-otopleniya-i-neobhodimoy-teplovoy-moschnosti/

Расчет тепловой мощности радиаторов отопления

Расчет тепловой мощности радиаторов отопления

Мощность радиатора – это тепловая энергия радиатора, обычно измеряется в Ваттах (Вт)

Существует прямая связь между теплопотерями помещения и мощностью радиатора. То есть если Ваша комната имеет теплопотери 1500 Вт, то и радиатор соответственно нужно подбирать той же мощности в 1500 Вт. Но не все так просто, потому что температура радиатора может быть в диапазоне от 45-95 °С и соответственно мощность радиатора будет разной при разных температурах.

Но многие к сожалению не поймут как узнать теплопотери конматы… Существуют простые расчеты для определения теплопотерь помещения. О них будет позже написано.

А с какой температурой будет греть радиатор?

Если у Вас частный дом с пластиковыми трубами, то температура радиаторов будет колебаться от 45-80 градусов. Средняя температура 60 градусов. Максимальная температура 80 градусов.

Если у Вас квартира с центральным отоплением, то от 45-95 градусов. Максимальная температура 95 градусов. Сейчас температура центрального отопления погодозависимая. Это означает, что температура теплоносителя центрального отопления зависит от наружной температуры. Если на улице холодает, то и температура теплоносителя выше и наоборот.

Мощность радиаторов по СНиП рассчитывается на ∆70 градусов. Но это не означает, что нужно так подбирать. Проектировщики закладывают мощность такую, чтобы меньше обогреть вашу квартиру и сэкономить деньги на тепловой энергии, а денег с квартплаты снять как обычно. На сегодняшний день менять радиатор на более мощный не запрещается.

Читайте также:  Как выбрать газовый конвектор правильно?

Но если Ваш радиатор будет сильно отбирать тепло и будут жалобы по системе, то к Вам применят меры.

Предположим, что Вы определились с температурой теплоносителя и мощностью радиатора

Дано:

Средняя температура радиатора 60 градусов

Мощность радиатора 1500 Вт

Температура помещения 20 градусов.

Решение

Когда Вы будите искать, спрашивать радиатор на мощность 1500 Вт, то Вам будут предлагать радиатор мощностью 1500 Вт с температурным напором ∆70 °С. Или ∆50, ∆30…

Что такое температурный напор радиатора?

Температурный напор – это разница температур между температурой радиатора(теплоносителя) и температурой помещения(воздуха)

Температура радиатора это условно средняя температура теплоносителя. То есть

Предположим, что имеется серия радиаторов определенных мощностей с температурным напором ∆70 °С.

Модель 1, 1500 Вт

Модель 2, 2000 Вт

Модель 3, 2500 Вт

Модель 4, 3000 Вт

Модель 5, 3500 Вт

Необходимо подобрать модель радиатора при средней температуре теплоносителя 60 градусов.

При этом температурный напор будет равен 60-20=40 градусов.

Существует формула перерасчета мощности радиаторов:

Uф – фактический температурный напор

Uн – нормативный температурный напор

Подробнее о формуле: Расчет мощности радиаторов. Стандарты EN 442 и DIN 4704

Решение

Ответ: Модель 5, 3500 Вт

Если Вы желаете получать уведомления о новых полезных статьях из раздела: Сантехника, водоснабжение, отопление,то оставте Ваше Имя и Email.

    Серия видеоуроков по частному дому
            Часть 1. Где бурить скважину?
            Часть 2. Обустройство скважины на воду
            Часть 3. Прокладка трубопровода от скважины до дома
            Часть 4. Автоматическое водоснабжение
    Водоснабжение
            Водоснабжение частного дома. Принцип работы. Схема подключения
            Самовсасывающие поверхностные насосы. Принцип работы. Схема подключения
            Расчет самовсасывающего насоса
            Расчет диаметров от центрального водоснабжения
            Насосная станция водоснабжения
            Как выбрать насос для скважины?
            Настройка реле давления
            Реле давления электрическая схема
            Принцип работы гидроаккумулятора
            Уклон канализации на 1 метр СНИП
    Схемы отопления
            Гидравлический расчет двухтрубной системы отопления
            Гидравлический расчет двухтрубной попутной системы отопления Петля Тихельмана
            Гидравлический расчет однотрубной системы отопления
            Гидравлический расчет лучевой разводки системы отопления
            Схема с тепловым насосом и твердотопливным котлом – логика работы
            Трехходовой клапан от valtec + термоголовка с выносным датчиком
            Почему плохо греет радиатор отопления в многоквартирном доме
            Как подключить бойлер к котлу? Варианты и схемы подключения
            Рециркуляция ГВС. Принцип работы и расчет
            Вы не правильно делаете расчет гидрострелки и коллекторов
            Ручной гидравлический расчет отопления
            Расчет теплого водяного пола и смесительных узлов
            Трехходовой клапан с сервоприводом для ГВС
            Расчеты ГВС, БКН. Находим объем, мощность змейки, время прогрева и т.п.
    Конструктор водоснабжения и отопления
            Уравнение Бернулли
            Расчет водоснабжения многоквартирных домов
    Автоматика
            Как работают сервоприводы и трехходовые клапаны
            Трехходовой клапан для перенаправления движения теплоносителя
    Отопление
            Расчет тепловой мощности радиаторов отопления
            Секция радиатора
            Зарастание и отложения в трубах ухудшают работу системы водоснабжения и отопления
            Новые насосы работают по-другому…
    Регуляторы тепла
            Комнатный термостат – принцип работы
    Смесительный узел
            Что такое смесительный узел?
            Виды смесительных узлов для отопления
    Характеристики и параметры систем
            Местные гидравлические сопротивления. Что такое КМС?
            Пропускная способность Kvs. Что это такое?
            Кипение воды под давлением – что будет?
            Что такое гистерезис в температурах и давлениях?
            Что такое инфильтрация?
            Что такое DN, Ду и PN ? Эти параметры нужно знать сантехникам и инженерам обязательно!
            Гидравлические смыслы, понятия и расчет цепей систем отопления
            Коэффициент затекания в однотрубной системе отопления
    Видео
            Отопление
                    Автоматическое управление температурой
                    Простая подпитка системы отопления
                    Теплотехника. Ограждающие конструкции.
            Теплый водяной пол
                    Насосно смесительный узел Combimix
                    Почему нужно выбрать напольное отопление?
                    Водяной теплый пол VALTEC. Видеосеминар
                    Труба для теплого пола – что выбрать?
                    Теплый водяной пол – теория, достоинства и недостатки
                    Укладка теплого водяного пола – теория и правила
                    Теплые полы в деревянном доме. Сухой теплый пол.
                    Пирог теплого водяного пола – теория и расчет
            Новость сантехникам и инженерам
            Сантехники Вы все еще занимаетесь халтурой?
            Первые итоги разработки новой программы с реалистичной трехмерной графикой
            Программа теплового расчета. Второй итог разработки
            Teplo-Raschet 3D Программа по тепловому расчету дома через ограждающие конструкции
            Итоги разработки новой программы по гидравлическому расчету
    Нормативные документы
            Нормативные требования при проектировании котельных
            Сокращенные обозначения
    Термины и определения
            Цоколь, подвал, этаж
            Котельные
    Документальное водоснабжение
            Источники водоснабжения
            Физические свойства природной воды
            Химический состав природной воды
            Бактериальное загрязнение воды
            Требования, предъявляемые к качеству воды
    Сборник вопросов
            Можно ли разместить газовую котельную в подвале жилого дома?
            Можно ли пристроить котельную к жилому дому?
            Можно ли разместить газовую котельную на крыше жилого дома?
            Как подразделяются котельные по месту их размещения?
    Личные опыты гидравлики и теплотехники
            Вступление и знакомство. Часть 1
            Гидравлическое сопротивление термостатического клапана
            Гидравлическое сопротивление колбы – фильтра
    Видеокурс
            Скачать курс Инженерно-Технические расчеты бесплатно!
    Программы для расчетов
            Technotronic8 – Программа по гидравлическим и тепловым расчетам
            Auto-Snab 3D – Гидравлический расчет в трехмерном пространстве
    Полезные материалы
    Полезная литература
            Гидростатика и гидродинамика
    Задачи по гидравлическому расчету
            Потеря напора по прямому участку трубы
            Как потери напора влияют на расход?
    Разное
            Водоснабжение частного дома своими руками
            Автономное водоснабжение
            Схема автономного водоснабжения
            Схема автоматического водоснабжения
            Схема водоснабжения частного дома
    Политика конфиденциальности

Источник: http://infosantehnik.ru/str/38.html

Какая нужна мощность батарей отопления – делаем расчет радиаторов правильно

Самостоятельный расчет мощности радиаторов отопления – довольно простая задача, которую можно решить без использования сложных вычислительных приборов. Весь вопрос в том, какая из существующих формул дает наиболее близкие к реальности результаты. Здесь мы рассмотрим самые популярные методы и по возможности постараемся оценить их точность. [contents]

Расчет по площади отапливаемого помещения

Самый простой способ рассчитать параметры батареи – использовать сантехнические нормы, которые говорят, что для отопления 10 м2 требуется тепловая мощность в 1 кВт. При этом необходимо иметь в виду следующие моменты:

  • Данный расчет часто дает немного завышенный результат;
  • Его можно применять при стандартной высоте потолков (до 3 м);
  • Метод не учитывает особенности помещения, такие как наличие стеклопакетов, качество утепления, количество окон и т. д;
  • Указанные нормы справедливы для средней полосы России. Для более холодных регионов необходимо вводить поправочные коэффициенты. Например, для радиаторов, устанавливаемых на Дальнем Востоке, берется коэффициент, равный 1,6. А вот на юге он должен быть меньше единицы, обычно от 0,7 до 0,9;
  • Если батареи планируется ставить в угловой комнате, результат умножается на 1,3.

Расчет по объему

Данный метод похож на предыдущий, но дает несколько более точные результаты, так как позволяет учесть все три размера. Он будет актуален, например, для сталинских домов и многих других строений с высокими потолками.

Рассчитать необходимую производительность радиаторов можно, зная нормативную мощность для отопления 1 м3. Это значение равно 41 Вт, и установлено оно опять же для средней полосы, для других территорий также нужно использовать поправочные коэффициенты.

Теплопотери в зависимости от места установки радиатора

Объем помещения равен произведению всех трех его измерений: высоты, ширины и длины. Мощность радиатора вычисляется умножением этого объема на 41.

Уточнение результатов

Получить более точные данные для радиаторов, устанавливаемых в нестандартных условиях, таких как частные дома, комнаты с большим процентом остекления и т. д., можно, немного подправив предыдущий расчет:

  • Для каждого окна к результату добавляем 100 Вт, для двери – 200 Вт. Это стандартные величины для этих виновников теплопотерь;
  • При подборе радиаторов в частный дом увеличиваем требуемую мощность в полтора раза. Такая суровая мера вполне объяснима: соседями сверху и снизу являются холодные воздушные уличные массы, поэтому потери тепла через крышу и пол будут значительно выше, чем в городской квартире;
  • Для батарей в угловых комнатах вводим коэффициент 1,3 (так же, как и при расчете отопления по площади).

Что дальше?

Казалось бы, все просто: мощность посчитали, теперь идем в магазин и ищем понравившуюся по дизайну и размерам модель.

Не торопитесь, потому что есть еще несколько важных тонкостей.

Во-первых, нужно рассчитать количество секций вашего радиатора. Это делается просто: производитель обычно указывает мощность одной секции своего прибора, поэтому надо просто разделить на нее полученный в предыдущих пунктах результат и округлить до целого числа в большую сторону.

Куда уходит тепло из дома

Для справки приведем средние значения мощности секций разных типов радиаторов:

  • чугунные – 160 Вт;
  • биметаллические – 180 Вт;
  • алюминиевые – 200 Вт.

Но и это еще не все. Дело в том, что мощность батарей всегда указывается для определенного теплового напора, который совсем не обязан совпадать с установленным в вашей системе.

Так, например, для режима, по которому устанавливались все старые нормы (действующие, кстати, до сих пор) принимаются значения 90/70/20. Это значит, что параметры радиаторов берутся равными 90 и 70 °C, а температура в помещении считается равной 20 °С. Тепловой напор в этом случае будет равен (90 + 70) / 2 – 20 = 60 °С.

Большинство же современных систем отопления работает в режиме 75/65/20 (среднетемпературный) или 55/45/20 (низкотемпературный) с тепловыми напорами 50 и 30 °С соответственно. Поэтому при выборе радиатора надо внимательно следить, какая именно температура указана в его паспорте.

Совет

Если температурный напор не соответствуют параметрам вашего отопления, нужно сделать дополнительный расчет. Для этого требуемую мощность умножаем на наш температурный напор и делим на паспортный.

Подробно вопрос рассчета количества батарей и секций рассмотрен на видео:

Правильный расчет тепловых параметров радиаторов очень важен для создания комфорта в доме. Подобрав параметры своего отопительного прибора с учетом всех описанных тонкостей, вы не замерзнете даже в самые холодные дни года.

Источник: https://all-for-teplo.ru/batarei/raschet-moshhnosti-radiatorov-otopleniya-po-obemu-i-po-ploshhadi.html

Расчета мощности стальных радиаторов отопления

Главная / Радиаторы / Таблица расчета мощности стальных радиаторов отопления

Сегодня потребительский рынок наполнен множеством моделей отопительных устройств, которые различаются по габаритам и показателям мощности. Среди них стоит выделить стальные радиаторы. Данные приборы довольно легкие, имеют привлекательный внешний вид и обладают хорошей теплоотдачей. Перед выбором модели необходимо произвести расчет мощности стальных радиаторов отопления по таблице.

Читайте также:  Теплый пол без стяжки: особенности

Разновидности

Виды стальных радиаторов отопления

Рассмотрим стальные радиаторы панельного типа, которые различаются по габаритам и степени мощности. Устройства могут состоять из одной, двух или трех панелей. Другой важный элемент конструкции – оребрение (гофрированные металлические пластины).

Чтобы получить определенные показатели тепловой отдачи, в конструкции устройств используется несколько комбинаций панелей и оребрения.

Перед выбором наиболее подходящего устройства для качественного отопления помещения, необходимо ознакомиться с каждой разновидностью.

Основные типы стальных радиаторов

Стальные панельные батареи представлены следующими типами:

  • Тип 10. Здесь устройство оснащено только одной панелью. Такие радиаторы имеют легкий вес и самую низкую мощность.

Стальные радиаторы отопления тип 10

  • Тип 11. Состоят из одной панели и пластины оребрения. Батареи обладают чуть большим весом и габаритами, чем предыдущий тип, отличаются повышенными параметрами тепловой мощности.

Стальной панельный радиатор типа 11

  • Тип 21. В конструкции радиатора две панели, между которыми располагается гофрированная металлическая пластина.
  • Тип 22. Батарея состоит из двух панелей, а также двух пластин оребрения. По размерам устройство схоже с радиаторами 21-го типа, однако, по сравнению с ними, обладают большей тепловой мощностью.

Стальной панельный радиатор типа 22

  • Тип 33. Конструкция состоит из трех панелей. Данный класс – самый мощный по тепловой отдаче и самый большой по размерам. В его конструкции к трем панелям присоединены 3 пластины оребрения (отсюда и цифровое обозначение типа — 33).

Стальной панельный радиатор типа 33

Каждый из представленных типов может различаться по длине прибора и его высоте. На основании этих показателей и формируется тепловая мощность устройства. Самостоятельно рассчитать данный параметр невозможно.

Однако каждая модель панельного радиатора проходит соответствующие испытания производителем, поэтому все результаты заносятся в специальные таблицы.

По ним очень удобно подобрать подходящую батарею для отопления различных типов помещений.

Определение мощности

Для точного расчета тепловой мощности необходимо отталкиваться от показателей тепловых потерь помещения, в котором планируется установить эти устройства.

Таблица для расчета количества радиаторов на М2

Для обычных квартир можно руководствоваться СНиПом (Строительными нормами и правилами), в которых прописаны объемы тепла из расчета на 1м3 площади:

  • В панельных зданиях на 1м3 требуется 41Вт.
  • В кирпичных домах на 1м3 расходуется 34 Вт.

На основании данных норм можно выявить мощность стальных панельных радиаторов отопления.

В качестве примера, возьмем комнату в стандартном панельном доме с габаритами 3,2*3,5м и высотой потолков в 3 метра. Первым делом определим объем помещения: 3,2*3,5*3=33,6м3. Далее обратимся к нормам СНиП и найдем числовое значение, которое соответствует нашему примеру: 33,6*41=1377,6Вт. В результате, мы получили количество тепла, необходимое для обогрева комнаты.

Дополнительные параметры

Нормативные предписания СНиПа составлены для условий средней климатической зоны.

Параметры микроклимата в помещениях установленные СНиП

Чтобы произвести расчет в областях с более холодными зимними температурами, нужно скорректировать показатели при помощи коэффициэнтов:

  • до -10° C – 0,7;
  • -15° C – 0,9;
  • -20° C — 1,1;
  • -25° C — 1,3;
  • -30° C — 1,5.

При расчете тепловых потерь, нужно брать во внимание и количество стен, которые выходят наружу. Чем их больше, тем выше будут показатели теплопотерь помещения. К примеру, если в комнате одна наружная стена – применяем коэффициент 1,1. Если мы имеем две или три наружные стены, то коэффициент будет 1,2 и 1,3 соответственно.

Насколько сильно должна греть батарея

Рассмотрим пример. Допустим, в зимний период в регионе держится средняя температура -25° C, а в помещении расположены две наружных стены. Из расчетов мы получим: 1378 Вт*1,3*1,2=2149,68 Вт. Итоговый результат округляем до 2150 Вт. Дополнительно необходимо учитывать, какие помещения расположены на нижнем и верхнем этаже, из чего сделана кровля, каким материалом утеплялись стены.

Расчет радиаторов Kermi

Прежде чем проводить расчет тепловой мощности, следует определиться с фирмой-производителем устройства, которое будет установлено в помещении. Очевидно, что лучшие рекомендации заслуженно имеют лидеры данной отрасли. Обратимся к таблице известного немецкого производителя Kermi, на основе которой и проведем необходимые расчеты.

Для примера возьмем одну из новейших моделей — ThermX2Plan. По таблице можно увидеть, что параметры мощности прописаны для каждой модели Kermi, поэтому необходимо просто найти нужное устройство из списка.

В области отопления не требуется, чтобы показатели полностью совпадали, поэтому лучше взять значение, которое немного больше рассчитанного. Так у вас будет необходимый запас на периоды резкого похолодания.

Радиатор Kermi Therm Х2 Plan-K

Все подходящие показатели отмечены в таблице красными квадратами. Допустим, для нас наиболее оптимальная высота радиатора – 505 мм (прописана в верхней части таблицы). Самый привлекательный вариант – устройства 33 типа с длиной 1005 мм. Если требуются более короткие приборы, следует остановиться на моделях 605 мм высотой.

Пересчет мощности исходя из температурного режима

Однако данные в этой таблице прописаны для показателей 75/65/20, где 75° C – температура провода, 65° C – температура отвода, а 20° C – температура, которая поддерживается в помещении. На основе этих значений производится расчет (75+65)/2-20=50° C, в результате которого мы получаем дельту температур.

В том случае, если у вас иные системные параметры, потребуется перерасчет. Для этой цели в Kermi подготовили специальную таблицу, в которой указаны коэффициенты для корректировки.

С ее помощью можно осуществить более точный расчет мощности стальных радиаторов отопления по таблице, что позволит подобрать наиболее оптимальное устройство для обогрева конкретного помещения.

Обратите внимание

Рассмотрим низкотемпературную систему, показатели которой составляют 60/50/22, где 60° C – температура провода, 50° C – температура отвода, а 22° C – температура, поддерживаемая в помещении.

Вычисляем дельту температур по уже известной формуле: (60+50)/2-22=33° C. Затем смотрим в таблицу и находим температурные показатели проводимой/отводимой воды.

В клетке с поддерживаемой температурой помещения находим нужный коэффициент 1,73 (в таблицах отмечается зеленым цветом).

Далее берем количество тепловых потерь помещения и умножаем его на коэффициент: 2150 Вт*1,73=3719,5 Вт. После этого возвращаемся к таблице мощностей, чтобы посмотреть подходящие варианты. В таком случае выбор будет скромнее, поскольку для качественного обогрева потребуются гораздо более мощные радиаторы.

Заключение

Как видим, правильный расчет мощности для стальных панельных радиаторов невозможен без знания определенных показателей.

Обязательно необходимо выяснить теплопотери помещения, определиться с фирмой-производителем батареи, иметь представление о температуре проводимой/отводимой воды, а также о температуре, которая поддерживается в помещении. На основе этих показателей можно легко определить подходящие модели батарей.

Фотогалерея (13 фото)

13.11.2016

Источник: http://gopb.ru/radiatory/tablica-rascheta-moshhnosti-stalnyx-radiatorov-otopleniya/

Как произвести расчет мощности радиаторов отопления

Главнейшей характеристикой любого современного жилища является комфорт и удобство, за которые отвечает множество факторов: правильно подобранный стиль интерьера, современная бытовая техника, экологически чистые материалы покрытий и мебели.

Однако самым главным условием является, конечно же, наличие хорошо функционирующей отопительной системы.

С эстетической точки зрения радиатор едва ли назовешь значимым элементом интерьера, однако по функциональности и обеспечению комфортного микроклимата в помещении именно он занимает главенствующую позицию.

Содержание

Радиаторы – обязательная составляющая любого помещения, будь то офис, кафе или загородный дом. Без них холодные русские зимы наносили бы ощутимый вред не только микроклимату помещений, но и здоровью человека. Однако даже при наличии устройств отопления температура помещения порой оставляет желать лучшего. С чем же это связано?

Современные радиаторы отличаются экономичностью

https://www.youtube.com/watch?v=ZkvOaJlQetM

Основной причиной неудовлетворительной работы отопительных систем зачастую является неправильный расчет мощности радиаторов отопления.

В результате ошибки в расчетах, отопительной мощи и теплоотдачи радиатора может быть недостаточно для обогрева всего помещения.

По этой причине возникает вопрос: как произвести точный расчет мощности устройства, чтобы не пришлось переделывать всю систему заново?

Факторы, влияющие на расчет мощности

В первую очередь важно уяснить, что точность расчета напрямую зависит от площади помещения, именно от отапливаемой площади будет зависеть теплоотдача прибора и его эффективность. Однако этот фактор не единственный, существует еще несколько нюансов, на которые стоит обратить особое внимание, рассчитывая мощность радиатора:

  • этаж, на котором находится помещение,
  • отсутствие либо наличие других источников отопления,
  • зональность помещения,
  • высота потолка: если он выше 3 метров, понадобятся дополнительные секции.

Помимо этого для достижения максимальной точности расчетов, должны быть учтены некоторые второстепенные факторы, такие как вид окон, установленных в помещении, какие стеклопакеты установлены – на 1, 2 или 3 стекла. Учитывая все эти важные детали, можно без труда подобрать идеальный отопительный прибор для любого помещения.

Индустрия предлагает разные решения

Как рассчитать мощность радиатора

При выборе радиатора следует учесть, что устройства бывают 3 типов: чугунного, биметаллического, а также стального алюминиевого, при этом первые 2 типа являются самыми распространенными.

Все они различны по устройству и техническим возможностям, однако вид радиатора абсолютно не влияет на расчет его мощности.

Итак, существует несколько специальных формул, по которым даже не специалист сможет произвести расчет мощности радиатора.

  1. Самая простая формула базируется на количестве окон и наружных стен помещения. В случае, если помещение оборудовано 1 окном и 1 наружной стеной, при расчете нужно исходить из того, что на 10 кв.м приходится 1 кВт мощности радиатора. Если наружных стен 2, то на 10 кв.м помещения придется 1,3 кВт мощности устройства.
  2. Формула, рассчитанная на помещения с потолками ниже 3 м, выглядит следующим образом: Sх100Вт/∆T. При этом S обозначает общую площадь отапливаемого помещения, а ∆T означает теплоотдачу одной секции радиаторов отопления.
  3. Формула расчета мощности, которой должны обладать радиаторы отопления, применяемая в помещениях с потолками выше 3 м, выглядит так: Sхhх40/∆T. В данной формуле h показывает высоту потолка, S является общей площадью отапливаемого помещения, а ∆T – показатель теплоотдачи одной секции радиатора отопления.

Несколько советов по расчету мощности и установке радиатора

Перед тем, как рассчитать мощность радиатора отопления, необходимо обратить внимание на несколько второстепенных факторов, увеличивающих точность расчетов. Существует несколько хитростей, которые позволят вам безошибочно определить количество секций и мощность радиатора:

  • Если в комнате находится более одного окна, предусмотрите дополнительные секции радиатора, чтобы окна не запотевали.
  • Если в помещении установлены пластиковые окна, целесообразно снизить мощность радиатора на 10-15%, по сравнению с результатом расчета.
  • Для угловых помещений необходимо установить хотя бы 2 радиатора, при этом прибавив 40% мощности к расчетной. Важнейшим фактором является и расположение помещения относительно сторон горизонта. Север наиболее подвержен воздействию низких температур, так что потребует большей мощности.
  • Следует учесть, что радиаторы со входом и выходом теплоносителя с одной стороны не должны иметь более 10 секций.
  • Обратите внимание на направление движения теплоносителя в радиаторе. Если теплоноситель движется по секциям снизу вверх, то эффективность устройства снижается на 8-12%, это стоит учесть при расчете.
  • Для повышения точности расчета уточняйте мощность радиаторов в технической документации, прилагаемой к товару при покупке.
Читайте также:  Тепловая пушка электрическая, как выбрать: советы

Комфорт для всех домочадцев

Не стоит пренебрегать таким важным элементом современного жилища, как отопительная система, ведь от комфортного температурного режима напрямую зависит удобство и здоровье людей, если речь идет о жилом помещении, а также качество работы сотрудников, если говорить о помещениях офисного и административного типа.

Источник: http://79w.ru/otoplenie/batarie-radiatory/kak-proizvesti-raschet-moshhnosti-radiatorov-otopleniya

Расчет систем отопления (часть 3 — Расчет радиаторов)

Итак, исходя из предыдущих статей стало ясно, что комфортные параметры внутреннего воздуха в помещениях в зимний период зависят напрямую от того соответствует ли мощность системы отопления здания количеству потерь тепла. В устоявшемся режиме здания все теплопотери должны быть равны мощности системы отопления. Это и называется тепловым балансом здания.

Тепловой баланс здания

Если в помещении есть много источников выделения тепла (тепловыделения от большого количества людей, от солнечной радиации или иных процессов, сопровождающихся выделением тепла), то данные показатели также должны быть учтены в тепловом балансе здания.

Теплопотери и теплопоступления в помещении общественного здания.

Но, как правило, в условиях континентального климата для жилых зданий этими показателями пренебрегают, устанавливая системы автоматики на системы отопления здания или термостатические вентиля на приборы отопления.

Этими мероприятиями можно поддерживать постоянную температуру в помещениях независимо от колебаний температуры наружного воздуха или внутренних тепловых возмущений.

В производственных или административных зданиях такие теплопоступления обычно компенсируются системами вентиляции.

Итоговый тепловой баланс здания определяется следующим образом:

Qот=Qогр+Qвент(инф)+/-Qвнутр, где, Qогр – теплопотери через ограждающие конструкции здания, Qвент(инф) – потери тепла на нагрев инфильтрации или приточных систем вентиляции, Qвнутр – поступления тепла от внутренних источников (люди, оборудование, солнечная радиация и пр.).

Тепловой баланс здания определяется по максимальным значениям потерь тепла в зимний период года при минимальных расчетных температурах наружного воздуха, влажности и скорости ветра для конкретного региона строительства. Все расчетные параметры регламентируются в нормативной документации, а, в частности, в СНиП 23-01-99 «Строительная климатология».

Для рассматриваемого примера теплопотери здания, а конкретно нагрузка на систему отопления, могут значительно отличаться по каждому помещению, поэтому использование удельных показателей, рассчитанных ранее носит чисто информационный характер. На практике следует выполнить точный теплотехнический расчет.

Итак, тепловой баланс для помещения площадью 8,12 м? выглядит следующим образом:

Q=(Qуд+Qуд.инф)*8,12м? Q100мм=(103+44)*8,12=1 194 Вт Q150мм=(81+44)*8,12=1 015 Вт Q200мм=(70+44)*8,12=926 Вт

Расчет и подбор радиаторов отопления

Радиаторы или конвекторы являются главными элементами отопительной системы, так как их основной функцией является передача тепла от теплоносителя воздуху в помещении или поверхностям комнаты.

Мощность радиаторов при этом должна четко соответствовать тепловым потерям по помещениям.

Из предыдущих разделов цикла статей видно, что укрупнено мощность радиаторов можно определить по удельным показателям по площади или объему комнаты.

Важно

Так, для отопления помещения в 20 м? с одним окном требуется в среднем установить прибор отопления мощностью 2 кВт, а если учесть небольшой запас на поверхность в размере 10-15%, то мощность радиатора составит 2,2 кВт ориентировочно.

Этот метод подбора радиаторов является достаточно грубым, так как не учитывает много значимых особенностей и строительных характеристик здания.

Более точным является подбор радиаторов на основании теплотехнического расчета жилого дома, который выполняется специализированными проектными организациями.

Основным параметром для подбора типоразмера прибора отопления является его тепловая мощность. А в случае с секционными алюминиевыми или биметаллическими радиаторами указывается мощность одной секции.

Наиболее часто используемыми в системах отопления радиаторами являются приборы с межосевым расстоянием 350 или 500 мм, выбор которых основан, прежде всего на конструкции окна и отметке подоконника относительно финишного напольного покрытия.

Мощность 1 секции радиатора

по паспорту, Вт

Площадь комнаты, м2

10 12 14 16 18 20 22
Количество секций
140 8 9 10 12 13 15 16
150 7 8 10 11 12 14 15
160 7 8 9 10 12 13 14
180 6 7 8 9 10 12 13
190 6 7 8 9 10 11 12
200 5 6 7 8 9 10 11

В техническом паспорте на приборы отопления производители указывают тепловую мощность применительно к каким-либо температурным условиям. Стандартными являются параметры теплоносителя 90-70 °C, в случае низкотемпературного отопления тепловую мощность следует корректировать согласно коэффициентам, указанных в технической документации.

В этом случае мощность приборов отопления определяется следующим образом:

Q=A*k*?T, где А – площадь теплоотдачи, м? k – коэффициент теплопередачи радиатора, Вт/м?*°C. ?T – температурный напор, °C

?T является средней величиной между температурой подающего и обратного теплоносителя и определяется  по формуле:

?T= (Тпод+Тобр)/2 – tпомещ

Паспортными данными является мощность радиатора Q и температурный напор, определенные в стандартных условиях. Произведение коэффициентов k*A является величиной постоянной и определяется сначала для стандартных условий, а затем можно подставить в формулу для определения фактической мощности радиатора, который будет работать в системе отопления с параметрами, отличающимися от принятых.

Для каркасного дома, рассматриваемого в качестве примера с толщиной изоляции 150 мм, подбор радиатора для помещения площадью 8,12 м2 будет выглядеть следующим образом.

Ранее мы определили, что удельные теплопотери для углового помещения с учетом инфильтрации 125 Вт/м2, значит, мощность радиатора должна составлять не менее 1 015 Вт, а с запасом в 15% 1 167 Вт.

Для установки доступен радиатор мощностью 1,4 кВт при параметрах теплоносителя 90/70 градусов, что соответствует температурному напору ?T= 60 градусов. Планируемая система отопления будет работать на параметрах воды 80/60 градусов (?T=50) Следовательно, чтобы удостовериться в том, что радиатор сможет полностью перекрыть теплопотери помещения необходимо определить его фактическую мощность.

Совет

Для этого, определив значение k*A=1400/60=23,3 Вт/град, определяем фактическую мощность Qфакт=23,3*50=1167 Вт, что полностью удовлетворяет требуемой тепловой мощности прибора отопления, который должен быть установлен в данном помещении.

Видео ролик на тему расчета мощности радиатора:

Влияние способов подключения и места установки на теплоотдачу радиаторов

При расчете фактической мощности радиаторов следует знать, что теплоотдача приборов также зависит и от способа размещения.

Фактическая мощность, полученная в результате расчетов, показывает какое количество тепла радиатор отдаст при расчетных параметрах теплоносителя, грамотной схеме подключения, сбалансированной системе отопления, а также при установке открыто на стене или под окном без использования декоративных экранов.

Как правило, оконные проемы являются строительными элементами с максимальными потерями тепла вне зависимости от количества камер и прочих  энергоэффективных показателей. Поэтому радиаторы отопления принято размещать в пространстве под окном.

В таком случае радиатор, нагревая воздух в зоне установки, создает некую душирующую завесу вдоль окна, направленную вверх помещения и позволяющую отсекать поток холодного воздуха.

При смешивании холодного воздуха с теплыми потоками от радиатора возникают конвективные потоки в помещении, которые позволяют увеличить скорость прогрева.

Рекомендуется устанавливать радиаторы шириной не меньше половины ширины оконного проема.

Еще одним требованием увеличить эффективность обогрева комнаты является подбор габарита радиатора относительно ширины оконного проема. Длину радиатора рекомендуется подбирать не мене половины ширины оконного проема. В противном случае будет велика вероятность образования холодных зон в непосредственной близости к окну и будет заметно снижена конвективная составляющая обогрева помещения.

Обратите внимание

Если в здании присутствует большое количество угловых комнат, то следует размещать такое количество приборов отопления, равное количеству наружных ограждающих конструкций.

Например, для помещения 1-го этажа рассматриваемого в качестве примера жилого дома площадью 8, 12 м2 следует предусматривать по 2 радиатора. Один располагается под оконными конструкциями, второй или у противоположного окна или у глухой стены, но в максимальном приближении к углу помещения. Таким образом, будет соблюден максимально равномерный прогрев всех комнат.

Если система отопления дома проектируется по вертикальной схеме, то прокладку стояков для подводки к радиаторам угловых комнат следует производить непосредственно в угловых стыках стен. Это позволит дополнительно прогревать наружные строительные конструкции и предотвратить отсыревание и порчу отделочных материалов в углах.

В случае установки радиаторов под окнами с использованием дополнительных декоративных элементов (экранов, широких подоконников) или установки в нишах для расчета фактической мощности отопительных приборов необходимо пользоваться следующими поправочными коэффициентами:

  • Узкий подоконник не перекрывает радиатор по глубине, но лицевая панель прибора отопления закрыта декоративным экраном (расстояние между стеной и экраном не менее 250 мм) – Ккорр=0,9.
  • Широкий подоконник полностью перекрывает глубину радиатора, декоративный экран закрывает лицевую панель (расстояние между стеной и экраном не менее 250 мм), но в верхней части оставлена щель, равная 100 мм по вертикали – Ккорр=1,12.
  • Широкий подоконник полностью перекрывает радиатор по глубине, дополнительные декоративные конструкции отсутствуют – Ккорр=1,05.

Из рассмотренных выше вариантов установки приборов отопления видно, что для того чтобы уровень конвекции не был снижен следует оставлять воздушные зазоры со всех сторон приборов отопления.

Минимальными расстояниями от финишного уровня напольного покрытия и от подоконника до прибора отопления должно составлять не менее 100 мм, а зазор между стеной и задней поверхностью радиатора не менее 30 мм.

Различают одностороннее подключение радиаторов к системам отопления и разностороннее, когда трубопроводы подводят к прибору с противоположных сторон.

Односторонний способ является наиболее экономичным и удобным с точки зрения дальнейшей эксплуатации приборов отопления.

Подключение радиаторов с разных сторон немного увеличивает их теплоотдачу, но на практике этот способ используют при установке отопительных приборов более 15-ти секций или при подключении нескольких радиаторов в связке.

Теплосъем от радиаторов зависит также и от точки подвода подающего трубопровода.

При подключении по схеме «сверху-вниз», когда горячая вода подводится к верхнему патрубку, а обратка к нижнему, теплопередача от радиатора увеличивается.

При подключении «снизу-вверх» тепловой поток снижается, при этом прогрев радиаторов осуществляется неравномерно, а типоразмер приборов должен быть значительно увеличен для достижения расчетной мощности.

Источник: http://santech-info.ru/otoplenie/raschet-moshhnosti-radiatorov.html

Ссылка на основную публикацию