Расчет тепловой нагрузки на отопление: способы

Как рассчитать тепловую нагрузку на отопление

При проектировании системы отопления, будь то промышленное строение или жилое здание, нужно провести грамотные расчеты и составить схему контура отопительной системы. Особое внимание на этом этапе специалисты рекомендуют обращать на расчёт возможной тепловой нагрузки на отопительный контур, а также на объем потребляемого топлива и выделяемого тепла.

Тепловая нагрузка: что это?

Под этим термином понимают количество отдаваемой приборами отопления теплоты. Проведенный предварительный расчет тепловой нагрузки позволить избежать ненужных расходов на приобретение составляющих отопительной системы и на их установку. Также этот расчет поможет правильно распределить количество выделяемого тепла экономно и равномерно по всему зданию.

В эти расчеты заложено множество нюансов. Например, материал, из которого выстроено здание, теплоизоляция, регион и пр. Специалисты стараются принять во внимание как можно больше факторов и характеристик для получения более точного результата.

Расчет тепловой нагрузки с ошибками и неточностями приводит к неэффективной работе отопительной системы. Случается даже, что приходится переделывать участки уже работающей конструкции, что неизбежно влечет к незапланированным тратам. Да и жилищно-коммунальные организации ведут расчет стоимости услуг на базе данных о тепловой нагрузке.

Основные факторы

Идеально рассчитанная и сконструированная система отопления должна поддерживать заданную температуру в помещении и компенсировать возникающие потери тепла. Рассчитывая показатель тепловой нагрузки на систему отопления в здании нужно принимать к сведению:

— Назначение здания: жилое или промышленное.

— Характеристику конструктивных элементов строения. Это окна, стены, двери, крыша и вентиляционная система.

— Размеры жилища. Чем оно больше, тем мощнее должна быть система отопления. Обязательно нужно учитывать площадь оконных проемов, дверей, наружных стен и объем каждого внутреннего помещения.

— Наличие комнат специального назначения (баня, сауна и пр.).

— Степень оснащения техническими приборами. То есть, наличие горячего водоснабжения, системы вентиляции, кондиционирование и тип отопительной системы.

— Температурный режим для отдельно взятого помещения. Например, в комнатах, предназначенных для хранения, не нужно поддерживать комфортную для человека температуру.

— Количество точек с подачей горячей воды. Чем их больше, тем сильнее нагружается система.

— Площадь остекленных поверхностей. Комнаты с французскими окнами теряют значительное количество тепла.

— Дополнительные условия. В жилых зданиях это может быть количество комнат, балконов и лоджий и санузлов. В промышленных – количество рабочих дней в календарном году, смен, технологическая цепочка производственного процесса и пр.

— Климатические условия региона. При расчёте теплопотерь учитываются уличные температуры. Если перепады незначительны, то и на компенсацию будет уходить малое количество энергии. В то время как при -40 о С за окном потребует значительных ее расходов.

Особенности существующих методик

Параметры, включаемые в расчет тепловой нагрузки, находятся в СНиПах и ГОСТах. В них же есть специальные коэффициенты теплопередачи. Из паспортов оборудования, входящего в систему отопления, берутся цифровые характеристики, касаемые определенного радиатора отопления, котла и пр. А также традиционно:

— расход тепла, взятый по максимуму за один час работы системы отопления,

— максимальный поток тепла, исходящий от одного радиатора,

— общие затраты тепла в определенный период (чаще всего – сезон); если необходим почасовой расчет нагрузки на тепловую сеть, то расчет нужно вести с учетом перепада температур в течение суток.

Произведенные расчеты сопоставляют с площадью тепловой отдачи всей системы. Показатель получается достаточно точный. Некоторые отклонения случаются. Например, для промышленных строений нужно будет учитывать снижение потребления тепловой энергии в выходные дни и праздничные, а в жилых помещениях – в ночное время.

Методики для расчета систем отопления имеют несколько степеней точности. Для сведения погрешности к минимуму необходимо использовать довольно сложные вычисления. Менее точные схемы применяются если не стоит цель оптимизировать затраты на отопительную систему.

Основные способы расчета

На сегодняшний день расчет тепловой нагрузки на отопление здания можно провести одним из следующих способов.

Три основных

  1. Для расчета берутся укрупненные показатели.
  2. За базу принимаются показатели конструктивных элементов здания. Здесь будет важен и расчет потерь тепла, идущего на прогрев внутреннего объема воздуха.
  3. Рассчитываются и суммируются все входящие в систему отопления объекты.

Один примерный

Есть и четвертый вариант. Он имеет достаточно большую погрешность, ибо показатели берутся очень усредненные, или их недостаточно. Вот эта формула — Qот = q0 * a * VH * (tЕН – tНРО ), где:

  • q0 – удельная тепловая характеристика здания (чаще всего определяется по самому холодному периоду),
  • a – поправочный коэффициент (зависит от региона и берется из готовых таблиц),
  • VH – объем, рассчитанный по внешним плоскостям.

Пример простого расчета

Для строения со стандартными параметрами (высотой потолков, размерами комнат и хорошими теплоизоляционными характеристиками) можно применить простое соотношение параметров с поправкой на коэффициент, зависящий от региона.

Предположим, что жилой дом находится в Архангельской области, а его площадь — 170 кв. м. Тепловая нагрузка будет равна 17 * 1,6 = 27,2 кВт/ч.

Подобное определение тепловых нагрузок не учитывает многих важных факторов. Например, конструктивных особенностей строения, температуры, число стен, соотношение площадей стен и оконных проёмов и пр. Поэтому подобные расчеты не подходят для серьёзных проектов системы отопления.

Расчет радиатора отопления по площади

Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 — 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.

Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.

В расчет радиатора отопления по площади входят следующие базовые параметры:

— высота потолков (стандартная – 2,7 м),

— тепловая мощность (на кв. м – 100 Вт),

— одна внешняя стена.

Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.

Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.

Усредненный расчет и точный

Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около 150 Вт. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный выглядит немного устрашающе. На самом деле ничего сложного. Вот формула:

  • q1 – тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
  • q2 – стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
  • q3 – соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% — 0.9, 10% = 0.8);

Источник: http://msklimat.ru/kak-rasschitat-teplovuyu-nagruzku-na-otoplenie.html

Как определить тепловую нагрузку на отопление?

Тепловая нагрузка на отопление — это количество тепловой энергии, необходимое для достижения комфортной температуры в помещении.

Существует также понятие максимальной почасовой нагрузки, которое следует понимать как наибольшее количество энергии, которое может понадобиться в отдельные часы при неблагоприятных условиях.

Чтобы понять, какие условия можно считать неблагоприятными, необходимо разобраться с факторами, от которых зависит тепловая нагрузка.

Потребность здания в тепле

В разных строениях потребуется неодинаковое количество тепловой энергии, чтобы человек чувствовал себя комфортно.

Среди факторов, влияющих на потребность в тепле, можно выделить следующие:

  1. Материал, из которого изготовлены стены, а также их толщина. Стена, выложенная в один кирпич и газобетонная стена, к тому же в совокупности с 20-сантиметровой прокладкой из пенопласта, отличаются в плане пропускания тепловой энергии.
  2. Материал кровли и ее конструкционные особенности. Плоская крыша из ж/б бетонных плит и хорошо утепленное чердачное помещение значительно разнятся по показателям теплопотерь.
  3. Вентиляционная система. На теплопотери влияют производительность вентиляции и возможность рекуперации тепла.
  4. Площадь остекленных поверхностей. Естественно, что помещение с французскими окнами при прочих равных условиях теряет больше тепла, чем комната с маленькими окнами-амбразурами. Этот недостаток значительного остекления сглаживается толстыми стеклопакетами, где стекла обработаны энергосберегающим веществом.
  5. Показатели инсоляции, свойственные той или иной местности, степень поглощения лучей Солнца внешней поверхностью здания. Также имеет значение расположение дома относительно сторон света. В качестве крайних примеров можно привести строение, всегда находящееся в тени и другой дом, у которого черные стены, наклонная черная крыша и расположение всех окон на юг.
  6. Температурная дельта между зданием и улицей определяет поток тепла через ограждающие элементы при перманентном сопротивлении теплопередаче. Если на улице 10 градусов тепла, теплопотери будут отличаться от ситуации, когда температура снаружи упала до 30 градусов мороза.
  7. Перспективы изменений потребностей в тепле. К примеру, если предполагается модернизация здания или добавление к нему новых пристроек, то может оказаться, что заложенной тепловой нагрузки уже вскоре будет недостаточно.

Распределение приборов

Если речь идет о водяном отоплении, максимальная мощность источника тепловой энергии должна равняться сумме мощностей всех источников тепла в здании.

Распределение приборов по помещениям дома зависит от следующих обстоятельств:

  1. Площадь помещения, уровень потолка.
  2. Положение комнаты в строении. Помещения в торцевой части по углах отличаются повышенными теплопотерями.
  3. Расстояние до источника тепла.
  4. Оптимальная температура (с точки зрения жильцов). На температуру помещения, помимо прочих факторов, влияет перемещение воздушных потоков внутри жилья.

Строительные нормы и правила (СНиП) рекомендуют такие температурные параметры:

  1. Жилые помещения в глубине строения — 20 градусов.
  2. Жилые помещения в угловых и торцевых частях здания — 22 градуса.
  3. Кухня — 18 градусов. В кухонном помещении температура выше, так как в ней присутствуют дополнительные источники тепла (электрическая плита, холодильник и т.д.).
  4. Ванная комната и туалет — 25 градусов.

Схема температуры в случае верхнего розлива

Если в доме обустроено воздушное отопление, объем потока тепла, поступающий в комнату, зависит от пропускной возможности воздушного рукава. Регулируется поток ручной настройкой вентиляционных решеток, а контролируется — термометром.

Дом может обогреваться распределенными источниками тепловой энергии: электро- или газовые конвекторы, теплые полы на электричестве, масляные батареи, ИК-обогреватели, кондиционеры. В этом случае нужные температуры определяются настройкой термостата. В этом случае нужно предусмотреть такую мощность оборудования, которой бы хватало при максимальном уровне тепловых потерь.

Методики расчета

Расчет тепловой нагрузки на отопление можно произвести на примере конкретного помещения. Пусть в данном случае это будет сруб из 25-сантиметрового бурса с чердачным помещение и полом из древесины. Размеры здания: 12×12×3. В стенах имеется 10 окон и пара дверей. Дом расположен в местности, для которой характерны очень низкие температуры зимой (до 30 градусов мороза).

Читайте также:  Обвязка твердотопливного котла отопления: схема системы

Расчеты можно произвести тремя способами, о которых пойдет речь ниже.

Первый вариант расчета

Согласно существующим нормам СНиП, на 10 квадратных метров нужен 1 кВт мощности. Данный показатель корректируется с учетом климатических коэффициентов:

  • южные регионы — 0,7-0,9;
  • центральные регионы — 1,2-1,3;
  • Дальний Восток и Крайний Север — 1,5-2,0.

Вначале определяем площадь дома: 12×12=144 квадратных метра. В таком случае базовый показатель тепловой нагрузке равен: 144/10=14,4 кВт. Полученный результат умножаем на климатическую поправку (будем использовать коэффициент 1,5): 14,4×1,5=21,6 кВт. Столько мощности нужно, чтобы в доме была комфортная температура.

Таблица соотношения мощности котла и площади дома

Второй вариант расчета

Способ, приведенный выше, страдает значительными погрешностями:

  1. Не учтена высота потолков, а ведь обогревать нужно не квадратные метры, а объем.
  2. Через оконные и дверные проемы теряется больше тепла, чем через стены.
  3. Не учтен тип здания — многоквартирное это здание, где за стенами, потолком и полом обогреваемые квартиры содей или это частный дом, где за стенами только холодный воздух.

Корректируем расчет:

  1. В качестве базового применим следующий показатель — 40 Вт на кубический метр.
  2. Для каждой двери предусмотрим по 200 Вт, а для окон — по 100 Вт.
  3. Для квартир в угловых и торцевых частях дома используем коэффициент 1,3. Если речь идет о самом высоком или самом низком этаже многоквартирного здания, используем коэффициент 1,3, а для частного строения — 1,5.
  4. Также снова применим климатический коэффициент.

Таблица климатического коэффициента

Производим расчет:

  1. Высчитываем объем помещения: 12×12×3=432 квадратных метра.
  2. Базовый показатель мощности равняется 432×40=17280 Вт.
  3. В доме есть десяток окон и пара дверей. Таким образом: 17280+(10×100)+(2×200)=18680Вт.
  4. Если речь идет о частном доме: 18680×1,5=28020 Вт.
  5. Учитываем климатический коэффициент: 28020×1,5=42030 Вт.

Итак, исходя из второго вычисления видно, что разница с первым способом расчета практически двукратная. При этом нужно понимать, что подобная мощность нужна только во время самых низких температур. Иными словами, пиковую мощность можно обеспечить дополнительными источниками обогрева, например, резервным обогревателем.

Третий вариант расчета

Есть еще более точный способ подсчета, в котором учитываются теплопотери.

Схема потери тепла в процентах

Формула для расчета такова: Q=DT/R, где:

  • Q — потери тепла на квадратный метр ограждающей конструкции;
  • DT — дельта между наружной и внутренней температурами;
  • R — уровень сопротивления при передаче тепла.

Чтобы упростить подсчеты, примем усредненный коэффициент (1,4) потерь тепла через ограждающие элементы. Осталось определить параметры термического сопротивления из справочной литературы. Ниже приведена таблица для наиболее часто применяемых конструкционных решений:

  • стена в 3 кирпича — уровень сопротивления составляет 0,592 на кв. м×С/Вт;
  • стена в 2 кирпича — 0,406;
  • стена в 1 кирпич — 0,188;
  • сруб из 25-сантиметрового бруса — 0,805;
  • сруб из 12-сантиметрового бруса — 0,353;
  • каркасный материал с утеплением минватой — 0,702;
  • пол из древесины — 1,84;
  • потолок или чердак — 1,45;
  • деревянная двойная дверь — 0,22.

Таблица значений утеплителей

Расчеты:

  1. Температурная дельта — 50 градусов (20 градусов тепла в помещении и 30 градусов мороза на улице).
  2. Потери тепла на квадратный метр пола: 50/1,84 (данные для пола из древесины)=27,17 Вт. Потери по всей площади пола: 27,17×144=3912 Вт.
  3. Теплопотери через потолок: (50/1,45)×144=4965 Вт.
  4. Рассчитываем площадь четырех стен: (12×3)×4=144 кв. м. Так как стены изготовлены из 25-сантиметрового бруса, R равняется 0,805. Тепловые потери: (50/0,805)×144=8944 Вт.
  5. Складываем полученные результаты: 3912+4965+8944=17821. Полученное число — общие теплопотери дома без учета особенностей потерь через окна и двери.
  6. Прибавляем 40% вентиляционных потерь: 17821×1,4=24,949. Таким образом, понадобится котел на 25 кВт.

Выводы

Даже самый продвинутый из перечисленных способов не учитывает всего спектра потерь тепла. Поэтому рекомендуется покупать котел с некоторым запасом мощности. В связи с этим приведем несколько фактов по особенностям КПД разных котлов:

  1. Газовое котельное оборудование работают с очень стабильным КПД, а конденсационные и соляровые котлы переходят на экономичный режим при небольшой нагрузке.
  2. Электрокотлы имеют 100% коэффициент полезного действия.
  3. Не допускается работа в режиме ниже номинальной мощности для твердотопливных котельных аппаратов.

Твердотопливные котлы регулируются ограничителем поступления воздуха в топочную камеру, однако при недостаточном уровне кислорода не происходит полного выгорания топлива. Это приводит к образованию большого количества золы и снижению КПД.

Исправить положение можно при помощи теплового аккумулятора. Бак с теплоизоляцией устанавливается между трубами подачи и обратки, размыкая их.

Таким образом, создается малый контур (котел — буферный бак) и большой контур (бак — отопительные приборы).

Схема с тепловым аккумулятором

Схема функционирует следующим образом:

  1. После закладки топлива оборудование работает на номинальной мощности. Благодаря естественной или принудительной циркуляции, происходит передача тепла в буфер. После сгорания топлива, циркуляция в малом контуре прекращается.
  2. В течение последующих часов тепловой носитель циркулирует по большому контуру. Буфер медленно передает тепло батареям или теплому полу.

Увеличенная мощность потребует дополнительных затрат. При этом запас мощности оборудования дает важный положительный результат: интервал между загрузками топлива значительно увеличивается.

Источник: http://klivent.biz/otopleniye/teplovaya-nagruzka.html

Расчет тепловой нагрузки на отопление здания

В холодное время года у нас в стране отопление зданий и сооружений составляют одну из основных статей расходов любого предприятия. И тут не важно жилое это помещение, производственное или складское.

Везде нужно поддерживать постоянную плюсовую температуру, чтобы не замерзли люди, не вышло из строя оборудование или не испортилась продукция или материалы.

В ряде случаев требуется провести расчет тепловой нагрузки на отопление того или иного зданий или всего предприятия в целом.

В каких случаях производят расчет тепловой нагрузки

  • для оптимизации расходов на отопление;
  • для сокращения расчетной тепловой нагрузки;
  • в том случае если изменился состав теплопотребляющего оборудования (отопительные приборы, системы вентиляции и т.п.);
  • для подтверждения расчетного лимита по потребляемой теплоэнергии;
  • в случае проектирования собственной системы отопления или пункта теплоснабжения;
  • если есть субабоненты, потребляющие тепловую энергию, для правильного ее распределения;
  • В случае подключения к отопительной системе новых зданий, сооружений, производственных комплексов;
  • для пересмотра или заключения нового договора с организацией, поставляющей тепловую энергию;
  • если организация получила уведомление, в котором требуется уточнить тепловые нагрузки в нежилых помещениях;
  • если организация нее имеет возможности установить приборы учета теплоэнергии;
  • в случае увеличения потребления теплоэнергии по непонятным причинам.

На каком основании может производиться перерасчет тепловой нагрузки на отопление здания

Приказ Министерства Регионального Развития № 610 от 28.12.

2009 “Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок” (Скачать) закрепляет право потребителей теплоэнергии производить расчет и перерасчет тепловых нагрузок.

Так же такой пункт обычно присутствует в каждом договоре с теплоснабжающей организацией. Если такого пункта нет, обсудите с вашими юристами вопрос его внесения в договор.

Но для пересмотра договорных величин потребляемой тепловой энергии должен быть предоставлен технический отчет с расчетом новых тепловых нагрузок на отопление здания, в котором должны быть приведены обоснования снижения потребления тепла. Кроме того, перерасчет тепловых нагрузок производиться после таких мероприятий как:

  • капитальный ремонт здания;
  • реконструкция внутренних инженерных сетей;
  • повышение тепловой защиты объекта;
  • другие энергосберегающие мероприятия.

Методика расчета

Для проведения расчета или перерасчета тепловой нагрузки на отопление зданий, уже эксплуатируемых или вновь подключаемых к системе отопления проводят следующие работы:

  1. Сбор исходных данные об объекте.
  2. Проведение энергетического обследования здания.
  3. На основании полученной после обследования информации производится расчет тепловой нагрузки на отопление, ГВС и вентиляцию.
  4. Составление технического отчета.
  5. Согласование отчета в организации, предоставляющей теплоэнергию.
  6. Заключение нового договора или изменение условий старого.

Сбор исходный данных об объекте тепловой нагрузки

Какие данные необходимо собрать или получить:

  1. Договор (его копия) на теплоснабжение со всеми приложениями.
  2. Справка оформленная на фирменном бланке о фактической численности сотрудников (в случае производственного зданий) или жителей (в случае жилого дома).
  3. План БТИ (копия).
  4. Данные по системе отопления: однотрубная или двухтрубная.
  5. Верхний или нижний розлив теплоносителя.

Все эти данные обязательны, т.к. на их основе будет производиться расчет тепловой нагрузки, так же вся информация попадет в итоговый отчет. Исходные данные, кроме того, помогут определиться со сроками и объемами работа. Стоимость же расчета всегда индивидуальна и может зависеть от таких факторов как:

  • площадь отапливаемых помещений;
  • тип системы отопления;
  • наличия горячего водоснабжения и вентиляции.

Энергетическое обследование здания

Энергоаудит подразумевает выезд специалистов непосредственно на объект. Это необходимо для того, чтобы провести полный осмотр системы отопления, проверить качество ее изоляции.

Так же во время выезда собираются недостающие данные об объекте, которые невозможно получить кроме как по средствам визуального осмотра. Определяются типы используемых радиаторов отопления, их месторасположение и количество. Рисуется схема и прикладываются фотографии.

Обязательно осматриваются подводящие трубы, измеряется их диаметр, определяется материал, из которого они изготовлены, как эти трубы подведены, где расположены стояки и т.п.

В результат такого энергетического обследования (энергоаудита) заказчик получит на руки подробный технический отчет и на основании этого отчета уже и будет проихводиться расчет тепловых нагрузок на отопление здания.

Технический отчет

Технический отчет по расчету тепловой нагрузки должен состоять из следующих разделов:

  1. Исходные данные об объекте.
  2. Схема расположения радиаторов отопления.
  3. Точки вывода ГВС.
  4. Сам расчет.
  5. Заключение по результатам энергоаудита, которое должно включать сравнительную таблицу максимальных текущих тепловых нагрузок и договорных.
  6. Приложения.
    1. Свидетельство членства в СРО энергоаудитора.
    2. Поэтажный план здания.
    3. Экспликация.
    4. Все приложения к договору по энергоснабжению.

После составления, технический отчет обязательно должен быть согласован с теплоснабжающей организацией, после чего вносятся изменения в текущий договор или заключается новый.

Пример расчета тепловых нагрузок объекта коммерческого назначения

Это помещение на первом этаже 4-х этажного здания. Месторасположение – г. Москва.

Исходные данные по объекту

Адрес объекта г. Москва
Этажность здания 4 этажа
Этаж на котором расположены обследуемые помещения первый
Площадь обследуемых помещений 112,9 кв.м.
Высота этажа 3,0 м
Система отопления Однотрубная
Температурный график 95-70 град. С
Расчетный температурный график для этажа на котором находится помещение 75-70 град. С
Тип розлива Верхний
Расчетная температура внутреннего воздуха + 20 град С
Отопительные радиаторы, тип, количество Радиаторы чугунные М-140-АО – 6 шт.Радиатор биметаллический Global (Глобал) – 1 шт.
Диаметр труб системы отопления Ду-25 мм
Длина подающего трубопровода системы отопления L = 28,0 м.
ГВС отсутствует
Вентиляция отсутствует
Тепловая нагрузка по договору (час/год) 0,02/47,67 Гкал

Расчетная теплопередача установленных радиаторов отопления, с учетом всех потерь, составила 0,007457 Гкал/час.

Максимальный расход теплоэнергии на отопление помещения составил 0,001501 Гкал/час.

Итоговый максимальный расход – 0,008958 Гкал/час или 23 Гкал/год.

В итоге рассчитываем годовую экономию на отопление данного помещения: 47,67-23=24,67 Гкал/год. Таким образом можно сократить расходы на теплоэнергию почти вдвое. А если учесть, что текущая средняя стоимость Гкал в Москве составляет 1,7 тыс. рублей, то годовая экономию в денежном эквиваленте составит 42 тыс. рублей.

Формула расчета в Гкал

Расчет тепловой нагрузки на отопление здания в случае отсутствия счетчиков учета тепловой энергии производится по формуле Q = V * (Т1 – Т2) / 1000, где:

  • V – объем волы, которую потребляет система отопления, измеряется тоннами или куб.м.,
  • Т1 – температура горячей воды. Измеряется в С (градусы по Цельсию) и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если точно определить температуру нельзя то используют усредненные показатели 60-65 С.
  • Т2 – температура холодной воды. Зачастую ее измерить практически невозможно и в таком случае используют постоянные показатели, которые зависят от региона. К примеру, в одном из регионов, в холодное время года показатель будет равен 5, в теплое – 15.
  • 1 000 – коэффициент для получения результата расчета в Гкал.
Читайте также:  Как укладывать утеплитель на стены: некоторые характеристики

Для системы отопления с закрытым контуром тепловая нагрузка (Гкал/час) рассчитывается другим способом: Qот = α * qо * V * (tв – tн.р) * (1 + Kн.р) * 0,000001, где:

  • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 С;
  • V – объем строения по наружным замерам;
  • – удельный отопительный показатель строения при заданной tн.р = -30 С, измеряется в Ккал/куб.м.*С;
  • – расчетная внутренняя температура в здании;
  • tн.р – расчетная уличная температура для составления проекта системы отопления;
  • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

Расчет по радиаторам отопления на площадь

Укрупненный расчет

Если на 1 кв.м. площади требуется 100 Вт тепловой энергии, то помещение в 20 кв.м. должно получать 2 000 Вт. Типичный радиатор из восьми секций выделяет около 150 Вт тепла. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный расчет

Точный расчет выполняется по следующей формуле: Qт = 100 Вт/кв.м. × S(помещения)кв.м. × q1 × q2 × q3 × q4 × q5 × q6× q7, где:

  • q1 – тип остекления: обычное =1,27; двойное = 1,0; тройное = 0,85;
  • q2 – стеновая изоляция: слабая, или отсутствующая = 1,27; стена выложенная в 2 кирпича = 1.0, современна, высокая = 0,85;
  • q3 – соотношение суммарной площади оконных проемов к площади пола: 40% = 1,2; 30% = 1,1; 20% – 0,9; 10% = 0,8;
  • q4 – минимальная уличная температура:  -35 С = 1,5; -25 С = 1,3; -20 С = 1,1; -15 С = 0,9; -10 С = 0,7;
  • q5 – число наружных стен в помещении: все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2;
  • q6 – тип расчетного помещения над расчетной комнатой: холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8;
  • q7 – высота потолков: 4,5 м = 1,2; 4,0 м = 1,15; 3,5 м = 1,1; 3,0 м = 1,05; 2,5 м = 1,3.

Источник: http://expertizo.ru/obsledovaniya/raschet-teplovoj-nagruzki-na-otoplenie-zdaniya.html

Расчет тепловой нагрузки на отопление: способы

Если в вашем доме отопительный котел работает на жидком топливе, то целесообразно хотя бы примерно знать, сколько топлива вам потребуется на эксплуатацию отопительных приборов.

Схема двухрубной системы отопления дома.

  • О тепловых потерях тепла через элементы здания
  • Способы уменьшения затрат на отопление
  • Вот некоторые способы уменьшения затрат на отопление
  • Исходные данные для расчета
  • Особенности расчета для пола, расположенного на грунте
  • Расчет тепловой энергии, поступающей в помещение за 1 час
  • Часовой расход тепловой энергии
  • Замечания по выполненному расчету
  • Расчет потерь утепленного и неутепленного чердака

Для газового котла или котла, использующего электрическую энергию, годовой расход тепла на отопление также будет ориентиром для определения предстоящих затрат.

Точный расчет потребления невозможен, если неизвестен часовой расход тепла на отопление.

О тепловых потерях тепла через элементы здания

Для определения количества тепла для обогрева дома и для того, чтобы вычислить величину нагрузок на котел, необходимо знать тепловых потерь через конструктивные элементы здания.

Схема отопления «ленинградка».

Величина тепловых потерь зависят от материала, из которого построен дом, и от выполнения современных требований по сохранению тепловых ресурсов.

Обратите внимание

Цель этой статьи состоит и в том, чтобы убедить читателя в необходимости строить жилище с учетом современных требований по его термоизоляции, и в необходимости сделать расчет затрат на утепление строений, которые были построены во времена, когда на экономное отопление с помощью отопительных приборов особого внимания не обращали.

Нет таких элементов дома, через которые не терялась бы накопленная в результате отопления с помощью отопительных тепловых приборов энергия. Тепло теряется и в результате таких нагрузок, как проветривание помещения, интенсивность которого определяется медицинскими требованиями, а уменьшить эти нагрузки нельзя, так как это нарушит требования.

Способы уменьшения затрат на отопление

Вот некоторые способы уменьшения затрат на отопление

  1. Утепление стен с наружной стороны пенопластом толщиной 5-10 см.
  2. Замена обычных окон на металлопластиковые.
  3. Установка термостатических клапанов на радиаторы воды. Это позволит исключить обогрев помещения сверх необходимости.
  4. Рациональное распределение радиаторов.

    Комната, температура в которой больше, будет источником обогрева соседних помещений.

  5. Программирование интенсивности работы системы обогрева по времени суток или в зависимости от времени проживания.
  6. Установка фольгированного экрана под окном, где обычно находятся радиаторы. Для этого никакой расчет не требуется.

    Следует также иметь в виду, что радиатор, накрытый оконной занавеской или закрытый любой решеткой, менее эффективен. Ограждения также вносят погрешность в измерение температуры в помещении датчиками термостатических клапанов (см. п.3).

  7. Снизить уровень комфорта.

    Например, кратковременное интенсивное проветривание создает сквозняки, но расчет показывает, что оно выгоднее, чем проветривание с помощью постоянно открытой форточки. Экономить можно и за счет рационального использования горячей воды при двухконтурной системе ее подогрева.

  8. Весьма эффективным является применение конденсационных отопительных газовых котлов.

    Котлы этого типа дороже обычных котлов, но они экономичнее: в процессе эксплуатации дополнительные расходы быстро окупаются. Для того чтобы убедиться, есть ли смысл устанавливать более дорогой котел, требуется отдельный расчет.

Исходные данные для расчета

Схема работы газового нагревателя.

Дадим формулы, по которым определяют потери через конструктивные элементы здания. Общей для стен, окон, полов и потолков является формула тепловых потерь:

Q = k*F*(tвн — tнар), (1)

  • где Q — тепловые потери, Вт;
  • k — коэффициент теплопередачи элемента здания, Вт/(м2°C);
  • F — площадь элемента здания;
  • tвн — температура воздуха внутри помещения, °C;
  • tнар — температура наружного воздуха, °C.

Температуру внутри помещения следует принимать такой, которую в семье считают комфортной. Обычно для расчетов принимают tвн= 20°С.

Среднюю температуру наружного воздуха для района проживания следует брать из справочников.

Расчет коэффициента теплопередачи окна в формуле (2) выполняем по формуле:

kокн =kстFст Kр*Fp P*φ/Fобщ(2)

  • где kст— коэффициент теплопередачи стеклопакета, Вт/(м°С);
  • Fст— площадь стеклопакета, м2;
  • Kр— коэффициент теплопередачи рамы, Вт/(м°С);
  • Fp— площадь рамы, м2;
  • Р- периметр остекления;
  • φ — коэффициент, учитывающий передачу тепла алюминиевой полосой;
  • Fобщ— общая площадь окна.

Особенности расчета для пола, расположенного на грунте

Схема утепления пола по грунту.

Расчет коэффициента теплопередачи в формуле (3) для пола, Kпол, расположенного на грунте, выполняем по формуле:

Kпол=1/(Rc d/σ)(3)

  • где d — толщина утепляющего слоя, м;
  • σ — коэффициент теплопроводности утепляющего слоя, Вт/(м2∙град.C);
  • Rc — коэффициент, зависящий от расстояния до периметра здания, на котором находится участок (зона) пола. Значения Rс приведены в таблице 1.

Таблица 1

Номер зоны 1 2 3 4
Расстояние до периметра, м 0-2 2-4 4-6 более 6
Значение Rc 2,1 4,3 8,6 14,2

Расчет тепловой энергии на нагрев наружного воздуха, Q, проникающего по не учтенным каналам (инфильтрация) определяем по формуле:

Q = 0,28*Ln*ρ*C (tp-ti)*k, (4)

  • где Ln — расход удаляемого воздуха, м³/час;
  • ρ — плотность воздуха в помещении, кг/м³;
  • C — удельная теплоемкость воздуха, кДж/(кг°С);
  • tp — температура воздуха в помещении, °C;
  • ti — температура наружного воздуха, °C;
  • k — коэффициент учета встречных тепловых потоков в конструкциях.

Расчет тепловой энергии, поступающей в помещение за 1 час

Рассчитать количество тепловой энергии Q, поступившей от отопительных приборов в отопительную систему за 1 час, можно рассчитать по формуле:

Q = С*(G (tпод-tобр)) (5)

  • где с = 4,1868 кДж/(кг°С) = 1 ккал/(кг°С) — удельная теплоемкость воды;
  • G — количество жидкости, прошедшей по трубопроводам, кг;
  • tпод и tобр — температура теплоносителя на выходе из котла и на обратке.

Схема обвязки котла отопления.

Для системы обогрева с принудительной циркуляцией теплоносителя достаточно иметь на выходе и входе в качестве измерительных приборов термометры и знать производительность циркуляционного насоса.

Трудности определения количества энергии приборов по формуле (6) связаны с определением напора в трубопроводе при естественной циркуляции воды. Напор, Н, определяем по формуле:

Н=h(pхол— ргор), (6)

  • где h — расстояние от нагревательных отопительных приборов (радиаторов) до ввода обратки в котел отопления, м;
  • pхол, ргор— удельный вес холодной и горячей воды, соответственно, кр/м3.

С ростом температуры приборов удельный вес воды уменьшается.

Коэффициент объемного расширения имеет нелинейную зависимость от температуры. В таблице 2 даны числовые значения зависимости β=f(t).

Таблица 2

Температура воды, град. С 7 15 25 68
Коэффициент расшир.×10-5 6,5 15 25,8 58

Путем построения графика по этим данным, пролонгируя, определяем этот параметр. Например, для температуры 75 и 40°С на выходе и входе приборов отопления получили: β75=61*10-5 β40= 39*10-5. Соответствующий им удельный вес воды, рассчитанный по формуле (8) составил: р75=640 кр/м3, р40=990 кр/м3.

По формуле (7) определяем напор, который будет в системе, если разность высот h=5 м.

Н=5*(990- 640) = 1750 кр/м2.

Такой напор соответствует высоте водяного столба Нвод =1,75 м.

Схема коллекторной системы отопления.

Чтобы определить объем воды V, проходящей по трубе D=25,4 мм (дюймовая труба на выходе котла) за 1 час (3600 с), воспользуемся формулой:

V=Т*πD2*v (8)

Получаем: V=3600*3,14*0,02542≈7 м3, то есть за 1 час в котле необходимо нагреть 7 м3 воды до температуры 75°С. Ранее было определено, что вес 1 м3 при такой температуре составляет 640 кр или примерно 64 кг. Теперь по формуле (6) получаем расход тепла за 1 час.

Qч=4,1868*64*(75-40)≈9400 кДж =9,4 МДж

Часовой расход тепловой энергии

Переведем МДж в более понятную всем единицу измерения — кВт*ч. 1 кВт*ч равен 3,6 МДж. Следовательно, на 1 час обогрева дома с помощью отопительных приборов потребуется W=9,4/3,6=2,6 кВт*ч энергии. Рассчитаем расход энергии различных приборов.

Электроэнергия. Можно считать, что КПД электрического котла составляет 100 %, так как вся тепловая энергия от ТЭН остается в помещении. То есть:

WЭ=2,6 кВт*ч

Газ. Сгорание 1 м3 природного газа дает 9,45 кВт*ч энергии. То есть за 1 час газовый котел, имеющий КПД 90%, расходует объем газа, равный:

VГ=2,6/9,45/0,9≈0,3 м3.

Важно

Примечание. Для конденсационных котлов полученный результат необходимо уменьшить на 10‑12 %. Расчет КПД газового котла выполняют относительно другого уровня удельной теплоты сгорания, поэтому не должен вызывать сомнение тот факт, что в сравнении с обычным котлом, его КПД может оказаться больше 100 %.

Схема отопления здания печью.

Дизельное топливо. Сгорание 1 кг дизельного топлива дает 42 МДж энергии. 1 л — 33, 6 МДж. КПД хорошего дизельного котла составляет 85%. Часовой расход топлива составит:

  • VД(кг)=9,4/42/0,85=0,26 кг;
  • VД(л)=9,4/33,6/0,85=0,33 л.

Дрова. 1 кг сухих дров за час расходует 2,78 кВт. КПД котла на дровах составляет примерно 70 %.Часовой расход дров составит:

VДр=2,6/2,78/0,7≈1,34 кг.

По полученным данным не трудно рассчитать затраты энергии за любой период времени. Под годовым расходом следует понимать расход энергоносителей в период отопительного сезона с учетом энергии, затрачиваемой на подогрев воды для бытовых нужд.

Замечания по выполненному расчету

Имейте в виду, что в расчете не учтены некоторые весьма важные обстоятельства, касающиеся тепловых нагрузок.

  1. Совершенно не учтены выше перечисленные возможности по экономному расходованию энергоносителей в системе.
  2. При определении напора (7) не учтено значение нагрузок от внутреннего сопротивления трубопровода. Поэтому фактическая скорость движения теплоносителя в режиме динамического равновесия в отопительной системе будет меньше рассчитанной.
  3. Расчет выполнен для двухтрубной системы отопления со встречным движением теплоносителя в системе (тупиковый вариант).

Расчет потерь утепленного и неутепленного чердака

Для того чтобы убедить сомневающихся в необходимости утеплять дом, прежде чем строить отопление, рассчитаем потери тепла через потолок верхнего этажа в 2-х вариантах: с неутепленным и утепленным чердаком.

Коэффициент теплопроводности для кровли из оцинкованного железа k=52 Вт/(м°С). Рассчитаем коэффициент теплопроводности одного слоя утеплителя из минеральной ваты толщиной 10 см. Без учета паронепроницаемых и гидроизоляционных пленок коэффициент теплопроводности крыши, определяемый по формуле (2), составит 0,045 Вт/(м°С).

Здесь d1=0,003м и σ1=52 Вт/(м°С); d2=0,1м и σ2=0,045 Вт/(м°С) — толщина и коэффициент теплопроводности оцинкованного железа и минеральной ваты соответственно. То есть теплопроводность крыши и тепловые нагрузки уменьшились более чем 1000 раз. За счет утепления крыши, разность (tвн — tнар) несколько возросла, но это увеличение несравнимо меньше.

Теперь, рассчитывая потери тепла и нагрузки через потолок по формуле (1), мы понимаем, что до утепления кровли температура на чердаке, независимо от отопления и отопительных приборов, практически была равна температуре наружного воздуха. Теперь же наружная, относительно потолочного перекрытия, температура и температурные нагрузки возросли. За счет этого отопление стало эффективнее, так как потери тепла через перекрытие уменьшились.

Если снаружи утеплить и перекрытие, то эффект будет значительным. Например, перекрытие из железобетона толщиной 250 мм имеет коэффициент теплопроводности, равный 1,7 Вт/(м°С), а пенополистирол толщиной 5 см имеет коэффициент теплопроводности равный 0,04 Вт/(м°С). По формуле (2) получаем 0,72 Вт/(м°С)

То есть коэффициент теплопроводности уменьшился в 1,7/0,72=2,36 раза. Соответственно, уменьшилась величина тепловых потерь и нагрузок в результате отопления.

Источник: http://www.sibear.ru/information/raschet-teplovoj-nagruzki-na-otoplenie-sposoby.htm

Тепловая нагрузка на отопление: расчет часовых и годовых показателей

Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.

Зачем нужно знать этот параметр

Распределение тепловых потерь в доме

Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.

В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:

  • Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
  • Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
  • Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.

Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.

Выбор методики расчета

Санитарно-эпидемиологические требования для жилых домов

Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.

Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.

Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.

Простые способы вычисления тепловой нагрузки

Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.

Зависимость мощности отопления от площади

Таблица поправочных коэффициентов для различных климатических зон России

Для дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.

Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:

15*1=15 кВт/час

Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.

Укрупненный расчет тепловой нагрузки здания

Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:

Где – удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше,  – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.

Таблица удельных тепловых характеристик зданий

Предположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом).

В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн ) должна составлять +22°С. Температура на улице при этом будет равна -15°С.

Воспользуемся формулой для расчета часовой нагрузки на отопление:

Q=0.49*1*480(22+15)= 9,408 кВт

По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты.

Совет

Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении.

Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления.

Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола.

Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери.

Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d).

Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

R=d/λ

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м²;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи – R=0.36/0.56= 0,64 м²*С/Вт;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон – 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

Обратите внимание

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления.

Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры.

Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Источник: https://StrojDvor.ru/otoplenie/samostoyatelnyj-raschet-teplovoj-nagruzki-na-otoplenie-chasovyx-i-godovyx-pokazatelej/

Ссылка на основную публикацию