Расчет обогрева помещения (формула)

Калькулятор расчета необходимой мощности электрообогревателя – с подробными пояснениями

Электрический обогрев помещений всегда может прийти на помощь основной системе отопления, заменить ее в осенний или весенний период межсезонья, а в особых случаях – даже стать основным источником тепла в зимнюю пору. Все зависит от того, какой тепловой мощностью обладают приобретаемые электрические нагреватели.

Калькулятор расчета необходимой мощности электрообогревателя

Несмотря на широкое разнообразие современных электрических обогревательных приборов – конвекторов, тепловентиляторов, масляных радиаторов, инфракрасных излучателей и т.п., параметр мощности для любого из них является определяющим.

Именно он показывает тот эксплуатационный потенциал, который заложен производителем в это изделие. Значит, прежде чем отправляться в магазин за покупкой, необходимо четко представлять, с каким критерием оценки подходить к выбору той или иной модели.

Поможет в этом — калькулятор расчета необходимой мощности электрообогревателя.

Ниже будут даны некоторые необходимые разъяснения по порядку проведения расчетов.

Калькулятор расчета необходимой мощности электрообогревателя

Перейти к расчётам

Пояснения по проведению расчетов мощности обогревателя

Программа калькулятора основана на учете особенностей помещения, в котором предполагается использование электрического обогревателя.

  • Прежде всего необходимо определиться, какая миссия будет возлагаться на прибор – станет ли он лишь «подмогой» для отопления, или необходимо предусмотреть вариант, когда обогреватель должен будет справиться с функцией основного источника тепла.
  • Площадь помещения – исходная величина для проведения расчетов.
  • Внешние стены – чем их больше, тем выше общее количество тепловых потерь, требующих определенной компенсации.
  • Стены с северной и восточной сторон практически никогда не получают «солнечного заряда», в отличие от южных и юго-западных.
  • Стены, расположенные с наветренной стороны, охлаждаются значительно быстрее других – это учтено в алгоритме расчета.
  • При указании уровня температур не следует указывать рекордно низкие показатели – это должно быть значение, которое является обычным для региона проживания, в самую холодную декаду зимы. Тем самым калькулятор уже учтет имеющиеся климатические особенности.
  • Степень утепления стен. Если термоизоляционные работы проводились полноценно, на основании проведенных теплотехнических расчетов, то можно отнести стены к разряду качественно утепленных. Кирпичная стена, примерно в 400÷500 мм толщиной, и аналогичная ей, могут претендовать на среднюю степень утепленности. Стены вообще без утепления, по идее, рассматриваться и вовсе не должны, так как в таком помещении даже при непозволительно большом расходе электроэнергии, комфортного микроклимата все равно не добиться. Приобретение электрообогревателя в таких условиях становится бессмысленной затеей.
  • Высота потолков – влияет на общий объем помещения.
  • Следующие два окна ввода – это характер помещений, расположенных сверху и снизу рассматриваемой комнаты. Естественно, от их особенностей зависит количество теплопотерь через верхнее и нижнее перекрытие.
  • Далее – блок полей, касающихся окон в помещении. Необходимо, в первую очередь, указать тип окон – калькулятор учтет их теплосберегающие возможности. Далее, после указания количества и размеров окон, программа вычислит коэффициент остекления (относительно площади помещения) и сделает соответствующую корректировку в расчетах.
  • Наконец, в комнате может быть одна или даже несколько используемых дверей, выходящих на улицу или в неотапливаемые помещения. Естественно, что при каждом открывании такой двери в комнату поступает немалый объем охлаждённого воздуха, который потребует дополнительного расхода тепловой мощности.

Результат дается в ваттах и киловаттах. По этим параметрам уже можно будет оценивать приглянувшуюся в магазине модель электрообогревателя.

Источник: https://stroyday.ru/kalkulyatory/sistemy-otopleniya/kalkulyator-rascheta-neobxodimoj-moshhnosti-elektroobogrevatelya.html

Расчет отопления помещения, как рассчитать, формулы, программа

Расчет тепловой нагрузки посредством использования увеличенных показателей

Для того чтобы максимально правильно определить размер необходимого количества топлива, осуществить расчет киловатт отопления, а также просчитать наибольшую эффективность работы отопительной системы при условии использования условленного типа горючего, специалистами жилищно-коммунальных служб была создана специальная методика и программа для расчета отопления, по которой получать необходимую информацию, используя заранее известные факторы, значительно проще.

А, кроме того, полученные результаты являются важным показателем, который непременно учитывается при расчете тарифов за услуги жилищно-коммунального хозяйства, а также при составлении сметы финансовых потребностей данной организации. Ответим же на вопрос, как правильно рассчитать отопление по увеличенным показателям.

Особенности методики

Данная методика, которую можно использовать, применяя калькулятор расчета отопления, регулярно используется для расчета технико-экономической эффективности внедрения различного типа энергосберегающих программ, а также во время применения нового оборудования и запуска энергоэффективных процессов.

Для того чтобы произвести расчет отопления помещения – расчет тепловой нагрузки (часовой) в отопительной системе отдельного здания, можно использовать формулу:

В данной формуле, производящей расчет отопления здания:

  • а – коэффициент, показывающий возможную поправку разницы температуры внешнего воздуха при расчете эффективности работы отопительной системы, где to от to = -30°С, и при этом определяется необходимый параметр q0;
  • Показатель V (м3) в формуле – это внешний объем отапливаемого здания (его можно найти в проектной документации здания);
  • q0 (ккал/м3 ч°С)является при отоплении здания удельной характеристикой с учетом to = -30°С;
  • Kи.р выступает коэффициентом инфильтрации, который учитывает такие дополнительные характеристики, как сила ветра, тепловой поток. Данный показатель указывает на расчет затрат на отопление – это уровень теплопотерь здания при инфильтрации, при этом теплопередача осуществляется по внешнему ограждению, и учитывается температура внешнего воздуха, применяемая ко всему проекту.

При этом высота определяется до верхней точки теплоизоляции чердачного помещения. Если же в здании крыша совмещена с чердачным перекрытием, то формула расчета отопления использует показатель высоты здания до средней точки крыши. Следует отметить, что в случае наличия в здании выступающих элементов и ниш, они не учитываются при вычислении показателя V.

Дом с выступающими нишами

После того, как рассчитать объем потребления отопления, для определения площади цокольного этажа (подвала) следует умножить площадь его горизонтального сечения на высоту.

Для определения показателя Kи.р используется следующая формула:

в которой:

  • g – ускорение, получаемое при свободном падении (м/с2);
  • L – высота дома;
  • w0 – согласно СНиП 23-01-99 – условная величина скорости ветра, присутствующего в данном регионе в отопительный период;

В тех регионах, где используется расчетный показатель температуры внешнего воздуха  t0 £ -40, при создании проекта отопительной системы, перед тем, как как рассчитать отопление помещения, следует добавлять теплопотерю в 5%. Это допустимо в тех случаях, если планируется, что в доме будет неотапливаемый подвал. Такая теплопотеря вызвана тем, что пол помещений 1-го этажа будет всегда холодным.

Для каменных домов, возведение которых уже закончено, следует учитывать более высокую теплопотерю в первый отопительный период и вносить определенные поправки. При этом расчет отопления по укрупненным показателям учитывает срок окончания строительства:

Май-июнь — 12%;

Июль-август – 20%;

Сентябрь – 25%;

Отопительный сезон (октябрь-апрель) – 30%.

Для расчета удельной отопительной характеристики здания q0 (ккал/м3 ч) следует рассчитывать по такой формуле:

Горячее водоснабжение

После того, как рассчитать отопление, для определения среднего показателя нагрузки горячего водоснабжения в отопительный период следует использовать следующую формулу:

При этом:

  • а – норма потребления горячей воды абонентом (л/ед) в сутки. Данный показатель утверждается местными органами власти. Если же норма не утверждена – показатель берется из таблицы СНиП 2.04.01-85 (приложение 3).
  • N – количество жителей (учеников, работников) в здании, соотносимое к суткам.
  • tc – показатель температуры воды, подаваемой в отопительный сезон. В случае если данный показатель отсутствует, берется приближенное значение, а именно —  tс = 5 °С.
  • Т – определенный отрезок времени в сутки, когда осуществляется горячее водоснабжение абонента.
  • Qт.п – показатель теплопотери в системе горячего водоснабжения. Чаще всего данный показатель отображает теплопотерю наружного циркуляционного и подающего трубопровода.

Для определения среднего показателя тепловой нагрузки системы горячего водоснабжения в период, когда отопление отключено, следует производить вычисления по формуле:

Здесь:

  • Qhm – средняя величина уровня тепловой нагрузки системы горячего водоснабжения в отопительный период. Единица измерения — Гкал/ч.
  • b – показатель, демонстрирующий степень снижения часовой нагрузки в системе горячего водоснабжения в неотопительный период, по сравнению с тем же показателем отопительного периода. Такой показатель должен определяться городским самоуправлением. В случае если значение показателя не определено, используется усредненный параметр:
  • 0,8 для ЖКХ городов, расположенных в средней полосе России;
  • 1,2-1,5 – показатель, применимый для южных (курортных) городов.

Для предприятий, расположенных в любом регионе России, используется  единый показатель – 1,0.

  • ths, th  — показатель температуры горячей воды, подаваемой абонентам в отопительный и неотопительный период.
  • tcs, tc – показатель температуры водопроводной воды в отопительный и неотопительный период. Если данный показатель неизвестен, можно воспользоваться усредненными данными — tcs = 15 °С, tc = 5 °С.

Источник: https://otoplenie-doma.org/raschet-otopleniya.html

Калькулятор расчета отопления по площади помещения: 2 нормы

Правильно рассчитав отопление по площади, можно сделать дом комфортным для проживания

Чтобы рассчитать количество радиаторов в квартире или в частном доме, потребуется для начала подобрать радиаторы.

При этом измеряют отапливаемую площадь и берут во внимание другие исходные показатели. Все температурные нормы указаны в соответствующих СНиП.

Но не обязательно изучать все это, ведь специальная программа избавит от множества трудностей.

Расчет мощности радиатора отопления: калькулятор и материал батарей

Расчет радиаторов начинается с выбора самих отопительных устройств.

Для батарей на батарейке этого не нужно, так как система электронная, но для стандартного отопления придется воспользоваться формулой или калькулятором. Отличают батареи за материалом изготовления.

Каждый вариант обладает своей мощностью. Многое зависит от необходимого количества секций и габаритов отопительных приборов.

Виды радиаторов:

  • Биметаллические;
  • Алюминиевые;
  • Стальные;
  • Чугунные.

Для биметаллических радиаторов используют 2 вида металла: алюминий и сталь. Внутренняя основа создается из прочной стали. Наружная сторона выполнена из алюминия. Он обеспечивает хорошее увеличение теплообмена прибора. В итоге получается надежная система с хорошей мощностью. На теплоотдачу влияет межосевой интервал и определенная модель радиатора.

Для алюминиевого радиатора тепловая мощность схожая с биметаллическими устройствами. Обычно этот показатель при межосевом расстоянии 50 см составляет 180-190 Вт. Более дорогие устройства имеют мощность до 210 Вт.

Алюминий часто используют, организовывая индивидуальный обогрев в частном доме. Дизайн устройств достаточно простой, но зато приборы отличаются отменной теплоотдачей. К гидроударам такие радиаторы не устойчивы, поэтому их нельзя применять для центрального отопления.

При расчете мощности биметаллического и алюминиевого радиатора учитывается показатель одной секции, так как приборы имеют монолитную конструкцию. Для стальных композиций расчет выполняется для всей батареи при определенных размерах. Выбор таких устройств следует осуществлять с учетом их рядности.

Обратите внимание

Измерение теплоотдачи чугунных радиаторов колеблется от 120 до 150 Вт. В некоторых случаях мощность может достигать 180 Вт. Чугун устойчив к коррозии и может работать при давлении 10 бар. Их можно использовать в любых строениях.

Минусы чугунных изделий:

  • Тяжелые – 70 кг весят 10 секций с расстоянием в 50 см;
  • Усложненная установка из-за тяжести;
  • Долго прогревается и использует больше тепла.

При выборе, какую батарею покупать, учитывают мощность одной секции. Так определяют прибор с необходимым количеством отделений. При межосевом расстоянии 50 см мощность конструкции составляет 175 Вт. А при расстоянии 30 см показатель измеряется, как 120 Вт.

Калькулятор расчета радиаторов отопления по площади

Калькулятор регистров по площади представляет собой наиболее простой способ определить необходимое количество радиаторов на 1м2. Расчеты делаются на основе норм производимой мощности. Выделяют 2 основных предписания норм, учитывающие климатические особенности региона.

Основные нормы:

  • Для умеренных климатов требуемая мощность составляет 60-100 Вт;
  • Для северных регионов норма составляет 150-200 Вт.
Читайте также:  Как подключить бойлер своими руками — инструкция (видео и фото)

Многих интересует, почему в нормах такой большой диапазон. Но мощность выбирается исходя из исходных параметров дома. Бетонные строения требуют максимальных показателей мощности. Кирпичные – средних, утепленные – низкие.

Для расчета секций потребуется умножить площадь на норму и поделить на теплоотдачу одной секции. В зависимости от модели радиатора учитывает мощность одной секции. Эту информацию можно найти в технических данных. Все достаточно просто и никаких особых сложностей не представляет.

Калькулятор простого расчета батарей отопления на площадь

Калькулятор является эффективным вариантом расчета. Для комнаты размеров 10 м кв потребуется 1 квт (1000 Вт). Но это при условии, что помещение не угловое и установленные двойные стеклопакеты. Чтобы узнать количество ребер панельных приборов, необходимо требуемую мощность поделить на теплоотдачу одной секции.

При этом учитывают высоту потолков. Если они выше 3,5 м, то потребуется увеличить количество секций на одну. А если помещение угловое, то добавляем плюс один отсек.

Теплоотдача секций прописана в технических данных. Для алюминиевых и биметаллических батарей учитывают мощность одной секции. Для чугунных приборов берут за основу теплоотдачу всего радиатора.

Калькулятор точного расчета количества секций радиаторов отопления

Простой расчет не учитывают много факторов. В итоге получаются искривленные данные. Тогда одни комнаты остаются холодными, вторые – слишком жаркими. Температуру можно контролировать с помощью запорных вентелей, но лучше заранее все точно посчитать, чтобы использовать нужное количество материалов.

Для точного расчета используют понижающие и повышающие тепловые коэффициенты. Сначала следует обратить внимание на окна. Для одинарного остекления используется коэффициент 1,7. Для двойных окон не нужен коэффициент. Для тройных показатель составляет 0,85.

Дальше учитывают кирпичную кладку. Для стены в два кирпича или с уплотнителем используют коэффициент 1. При наличии теплоизоляции применяет показатель 0,85, при отсутствии – 1,27.

При расчетах учитывают соотношение площади полов и окон. Идеальное соотношение составляет 30%. Тогда применяют коэффициент 1. При повышении соотношения на 10% коэффициент повышается на 0,1.

Коэффициенты для разной высоты потолков:

  • Если потолок ниже 2,7 м, коэффициент не нужен;
  • При показателях от 2,7 до 3,5 м используют коэффициент 1,1;
  • Когда высота составляет 3,5-4,5 м, потребуется коэффициент 1,2.

При наличии чердаков или верхних этажей также применяет определенные коэффициенты. При теплом чердаке применяют показатель 0,9, жилой комнате – 0,8. Для неотапливаемых чердаков берут 1.

Калькулятора объема для расчета тепла на отопление помещения

Подобные расчеты используют для слишком высоких или слишком низких комнат. При этом рассчитывают по объему комнаты. Так на 1 м куб нужно 51 Вт мощности батареи. Формула расчета имеет такой вид: А=В*41

Расшифровка формулы:

  • А — сколько нужно секций;
  • В – объем помещения.

Для нахождения объема умножаем длину на высоту и ширину. Если батарея ее разделена на секции, то общая потребность разделяется на мощность целой батареи. Полученные расчеты принято округлять в большую сторону, так как компании нередко увеличивают мощность своего оборудования.

Как рассчитать количество секций радиаторов на комнату: погрешности

Тепловая мощность за формулами рассчитывается с учетом идеальных условий. В идеале температура теплоносителя на входе составляет 90 градусов, а на выходе – 70. Если в доме поддерживать температуру 20 градусов, то теплой напор системы будет составлять 70 градусов. Но при этом один из показателей обязательно будет отличаться.

https://www.youtube.com/watch?v=ZkvOaJlQetM

Сначала потребуется рассчитать температурный напор системы. Берем исходные данные: температура на входе и выходе, в помещении. Дальше определяем дельту системы: потребуется рассчитать среднее арифметическое между показателя на входе и выходе, затем отнимают температуру в комнате.

Полученную дельту следует найти в таблице пересчета и умножить мощность на данный коэффициент. В итоге получает мощность одной секции. Таблица состоит всего из двух столбиков: дельта и коэффициент. Показатель получаем в ватт. Данная мощность используется при расчете количества батарей.

Особенности расчета отопления

Часто утверждается, что для 1 метр квадратный достаточно 100 Вт. Но данные показатели поверхностные. Они не учитывают множество факторов, о которых стоит знать.

Необходимые данные для расчета:

  1. Площадь комнаты.
  2. Количество внешних стен. Они холодят помещения.
  3. Стороны света. Важно солнечная или затененная это сторона.
  4. Зимняя роза ветров. Там, где в зимнее время достаточно ветряно, то комната будет холодной. Все данные учитывает калькулятор.
  5. Климат региона – минимальные температуры. Достаточно взять средние показатели.
  6. Кладка стен – сколько кирпичей использовалось, есть ли утепление.
  7. Окна. Учитывают их площадь, утепления, тип.
  8. Количество дверей. Стоит помнить, что они отнимают тепло и заносят холод.
  9. Схема врезки батарей.

Кроме этого всегда берется во внимание мощность одной секции радиатора. Благодаря этому можно узнать, сколько радиаторов вешать в одну линию. Калькулятор значительно упрощает расчеты, так как многие данные являются неизменными.

Как производится расчет отопления по площади помещения: калькулятор (видео)

Количество ребер на комнату легко определяется с помощью калькулятора. Чтобы правильно все рассчитать, потребуется знать, сколько квадратов обогревается и некоторые особенности частного дома или квартиры. Можно сделать все по нормативу. На основе этого упрощается подбор приборов для обогрева. При этом вывести необходимое количество киловатт можно и самостоятельно за формулой.

Источник: https://homeli.ru/stroitelstvo-doma/inzhenernye-sistemy/kanalizatsiya/raschet-otopleniya-po-ploshchadi-pomeshcheniya-kalkulyator

Как рассчитать отопление для помещения

Прежде чем приступать к закупке материалов и монтажу систем теплоснабжения дома или квартиры, необходимо провести расчет отопления, исходя из площади каждого помещения. Базовые параметры для проектирования обогрева и расчета тепловой нагрузки:

  • Площадь;
  • Количество оконных блоков;
  • Высота потолков;
  • Расположение комнаты;
  • Теплопотери;
  • Теплоотдача радиаторов;
  • Климатический пояс (температура наружного воздуха).

Методика, описанная ниже, применяется для расчета количества батарей для площади помещения без дополнительных источников отопления (теплые полы, кондиционеры и т.д.). Рассчитать отопление можно двумя способами: по простой и усложненной формуле.

Расчет отопления по количеству радиаторов (простая формула)

До начала проектирования теплоснабжения стоит решить, какие именно радиаторы будут устанавливаться. Материал, из которого изготавливаются батареи обогрева:

  • Чугун;
  • Сталь;
  • Алюминий;
  • Биметалл.

Оптимальным вариантом считаются алюминиевые и биметаллические радиаторы. Самая высокая тепловая отдача у биметаллических устройств. Чугунные батареи долго нагреваются, но после отключения отопления температура в помещении держится довольно долго.

Простая формула для проектирования количества секции в радиаторе обогрева:

K = Sх(100/R), где:

S – площадь помещения;

R – мощность секции.

Если рассматривать на примере с данными: комната 4 х 5 м, биметаллический радиатор, мощность 180 Вт. Расчет будет выглядеть так:

Важно

K = 20*(100/180) = 11,11. Итак, для комнаты площадью 20 м2 необходимой для установки является батарея с минимум 11-ю секциями. Или, например, 2 радиатора по 5 и 6 ребер. Формула используется для помещений с высотой потолка до 2,5 м в стандартном здании советской постройки.

Однако такой расчет системы отопления не учитывает теплопотери здания, также не берется в расчет температура наружного воздуха дома и количество оконных блоков. Поэтому следует также брать во внимание эти коэффициенты, для окончательного уточнения количества ребер.

Вычисления для панельных радиаторов

В случае когда предполагается установка батареи с панелью вместо ребер, используется следующая формула по объему:

W = 41хV, где W – мощность батареи, V – объем комнаты. Число 41 – норма средней годовой мощности обогрева 1 м2 жилого помещения.

В качестве примера можно взять помещение площадью 20 м2 и высотой 2,5 м. Значение мощности радиатора по объему помещения в 50 м3 будет равно 2050 Вт, или 2 кВт.

Расчет теплопотерь

H2_2

Основные потери тепла происходят через стены помещения. Для расчета нужно знать коэффициент теплопроводности наружного и внутреннего материала, из которого построен дом, толщину стены здания, также важна средняя температура наружного воздуха. Основная формула:

Q = S х ΔT /R, где

ΔT – разница температуры снаружи и внутреннего оптимального значения;

S – площадь стен;

R – тепловое сопротивление стен, которое, в свою очередь, рассчитывается по формуле:

R = B/K, где B – толщина кирпича, K – коэффициент теплопроводности.

Пример расчета: дом построен из ракушняка, в камень, находится в Самарской области. Теплопроводность ракушняка в среднем составляет 0,5 Вт/м*К, толщина стены – 0,4 м. Учитывая средний диапазон, минимальная температура зимой -30 °C. В доме, согласно СНИП, нормальная температура составляет +25 °C, разница 55°C.

Если комната угловая, то обе ее стены непосредственно контактируют с окружающей средой. Площадь наружных двух стен комнаты 4х5 м и высотой 2,5 м : 4х2,5 + 5х2,5 = 22,5 м2.

Далее выводится коэффициент теплопотери, чтобы в заключении сделать расчет системы отопления:

R = 0,4/0,5 = 0,8

Q = 22,5*55/0,8 = 1546 Вт.

Кроме того, необходимо учитывать утепление стен помещения. При отделке пенопластом наружной площади теплопотери уменьшаются примерно на 30%. Итак, окончательная цифра составит около 1000 Вт.

Расчет тепловой нагрузки (усложненная формула)

Схема теплопотерь помещений

Чтобы вычислить окончательный расход тепла на отопление, необходимо учесть все коэффициенты по следующей формуле:

КТ = 100хSхК1хК2хК3хК4хК5хК6хК7, где:

S – площадь комнаты;

К – различные коэффициенты:

K1 – нагрузки для окон (в зависимости от количества стеклопакетов);

K2 – тепловой изоляции наружных стен здания;

K3 –нагрузки для соотношения площади окон к площади пола;

K4 – температурного режима наружного воздуха;

K5 – учитывающий количество наружных стен комнаты;

K6 – нагрузки, исходя из верхнего помещения над рассчитываемой комнатой;

K7 – учитывающий высоту помещения.

Как пример, можно рассмотреть ту же комнату здания в Самарской области, утепленную снаружи пенопластом, имеющую 1 окно с двойным стеклопакетом, над которой расположено отапливаемое помещение. Формула тепловой нагрузки будет выглядеть следующим образом:

KT = 100*20*1,27*1*0,8*1,5*1,2*0,8*1= 2926 Вт.

Расчет отопления ориентирован именно на эту цифру.

Расход тепла на отопление: формула и корректировки

Пример методики расчёта отопления по объему помещения

Исходя из выше сделанных расчетов, для отопления комнаты необходимо 2926 Вт. Учитывая тепловые потери, потребности составляют: 2926 + 1000 = 3926 Вт (KT2). Для расчета количества секций используют следующую формулу:

K = KT2/R, где KT2 – окончательное значение тепловой нагрузки, R – теплоотдача (мощность) одной секции. Итоговая цифра:

K = 3926/180 = 21,8 (округленная 22)

Итак, чтобы обеспечить оптимальный расход тепла на отопление, необходимо поставить радиаторы, имеющие в сумме 22 секции. Нужно учитывать, что самая низкая температура – 30 градусов мороза по времени составляет максимум 2-3 недели, поэтому можно смело уменьшить число до 17 секций (- 25%).

Совет

Если хозяев жилья не устраивает такой показатель количества радиаторов, то следует изначально брать во внимание батареи, имеющие большую мощность теплоснабжения. Либо утеплять стены здания и внутри, и снаружи современными материалами. Кроме того, нужно правильно оценить потребности жилья в тепле, исходя из второстепенных параметров.

Существует еще несколько параметров, влияющих на дополнительный расход энергии впустую, что влечет за собой увеличение тепловой потери:

  1. Особенности наружных стен. Энергии обогрева должно хватить не только для отопления помещения, но и для компенсации потерь тепла. Стена, контактирующая с окружающей средой, со временем от перепадов температуры наружного воздуха начинает пропускать внутрь влагу. Особенно следует хорошо утеплить и провести качественную гидроизоляцию для северных направлений. Также рекомендуется изолировать поверхность домов, находящихся во влажных регионах. Высокий годовой уровень осадков неизбежно приведет к повышению теплопотерь.
  2. Место установки радиаторов. Если батарея монтирована под окном, то происходит утечка энергии обогрева через его конструкцию. Уменьшить потери тепла поможет установка качественных блоков. Также нужно рассчитывать мощность прибора, установленного в подоконной нише – она должна быть выше.
  3. Условность годовой потребности тепла для зданий в разных часовых поясах. Как правило, по СНИПам рассчитывается усредненная температура (усредненный годовой показатель) для зданий. Однако потребности в тепле бывают существенно ниже, если, например, на холодную погоду и низким показателям наружного воздуха приходится в общей сложности 1 месяц в году.
Читайте также:  Ремонт системы отопления: оборудование, материалы, этапы работы

Источник: http://DomOtopim.ru/obsluzhivanie-otopleniya/proektirovanie-i-montazh/raschet-otopleniya-po-ploschadi-pomescheniya.html

Расчет радиаторов отопления для дома по площади помещения: схема определения и важные параметры комнат

При длительном проживании в доме многие люди сталкиваются с необходимостью замены системы отопления. Некоторые владельцы квартир в определённый момент решают выполнить замену изношенного радиатора отопления.

Чтобы после выполнения необходимых мероприятий в доме была обеспечена теплая атмосфера, необходимо правильно подойти к задаче расчета отопления для дома по площади помещения. От этого во многом зависит эффективность работы системы отопления.

Чтобы обеспечить это, нужно правильно произвести расчет количества секций устанавливаемых радиаторов. В этом случае теплоотдача от них будет оптимальной.

Если количество секций будет недостаточным, то необходимый прогрев комнаты никогда не произойдет.

А по причине недостаточного количества секций в радиаторе возникнет большой расход тепла, что негативным образом отразится на бюджете владельца квартиры.

Определить потребность конкретного помещения в отоплении можно, если произвести простые расчеты. А для того чтобы они казались точными, при их выполнении необходимо принимать во внимание целый ряд дополнительных параметров.

Для того чтобы правильно рассчитать радиаторы отопления для определенного помещения, необходимо, прежде всего, принимать во внимание площадь комнаты. Самый простой способ — ориентироваться на сантехнические нормы, согласно которым для отопления 1 кв. м. требуется 100 Ватт мощности радиатора отопления.

Следует не забывать и о том, что этот метод может использоваться для помещений, у которых высота потолков стандартная, то есть, варьируется от 2,5 до 2,7 метра. Выполнение расчетов с использованием этого метода позволяет получить несколько завышенные результаты.

Помимо этого при его использовании во внимание не принимаются следующие особенности:

  • число окон и тип пакетов, установленных в помещении;
  • количество наружных стен, расположенных в помещении;
  • материалы изготовления стен и их толщина;
  • тип и толщина используемого утеплителя.

Тепло, которое для создания комфортной атмосферы в помещении должны давать радиаторы: для получения оптимальных расчетов необходимо взять площадь помещения и умножить ее на тепловую мощность радиатора.

Пример расчета радиатора

Скажем, если комната имеет площадь 18 кв. м., то для неё потребуется батарея мощностью 1800 ватт.

18 кв. м. х 100 Вт = 1800 Вт.

Полученный результат необходимо разделить на количество тепла, которое в течение часа выделяет одна секция радиатора отопления. Если в паспорте изделия указывают, что этот показатель равен 170 Вт, то далее расчеты будут такими:

1800 Вт / 170 Вт = 10,59.

Полученный результат необходимо округлить до целого. В результате получаем 11. Это означает, что в помещение с такой площадью оптимальным решением будет установка радиатора отопления с одиннадцатью секциями.

Обратите внимание

Следует сказать, что подобный метод отлично подходит только помещений, которые получают тепло от централизованной магистрали, где циркулирует теплоноситель с температурой 70 градусов Цельсия.

Существует еще один способ, который по своей простоте превосходит предыдущие. Применять его можно для расчета количества отопления в квартирах панельных домов.

При его использовании учитывается то, что одна секция в состоянии обогреть площадь 1,8 кв. м., то есть, при выполнении расчетов площадь помещения следует разделить на 1,8. Если комната имеет площадь 25 кв. м.

, то для обеспечения оптимального отопления потребуется 14 секций в радиаторе.

25 кв. м. / 1,8 кв. м. = 13,89.

Однако у такого метода расчета имеется один нюанс. Его нельзя использовать для приборов пониженной и повышенной мощности. То есть, для тех радиаторов, у которых отдача одной секции варьируется в диапазоне от 120 до 200 Вт.

Метод расчета отопления для комнат с высокими потолками

Если в помещении потолки имеют высоту более 3 метров, то применение перечисленных выше способов не дает возможности правильно рассчитать потребность в отоплении. В таких случаях необходимо использовать формулу, которая учитывает объем помещения. В соответствии с нормативами СНиП, для обогрева одного кубического метра объема помещения требуется 41 Ватт тепла.

Пример расчета радиатора

Отталкиваясь от этого, для обогрева помещения, площадь которого составляет 24 кв. м., а высота потолков не менее 3 метров, расчеты будут следующие:

24 кв. м. х 3 м = 72 куб. м. В результате получаем общий объем помещения.

72 куб. м. х 41 Вт = 2952 Вт. Полученный результат — суммарная мощность радиатора, который обеспечит оптимальный обогрев комнаты.

Теперь необходимо рассчитать количество секций в батарее для комнаты такой площади. В том случае если в паспорте к изделию указано, что теплоотдача одной секции составляет 180 Вт, при расчетах необходимо общую мощность батареи разделить на это число.

В итоге получаем 16,4. Потом результат нужно округлить. В результате имеем 17 секций. Батареи с таким количеством секций вполне хватит для создания теплой атмосферы в комнате площадью 72 м3. Выполнив несложные вычисления, получаем нужные нам данные.

Дополнительные параметры

Выполнив расчет, следует провести корректировку полученного результата, принимая во внимание особенности комнаты. Они должны учитываться следующим образом:

  • для комнаты, являющейся угловой, с одним окном при расчетах к полученной мощности батареи необходимо добавить 20% дополнительно;
  • если в помещении имеется два окна, то должна быть выполнена корректировка в сторону увеличения на 30%;
  • в случаях, когда монтаж радиатора выполняется в нише под окном, его теплоотдача несколько снижается. Поэтому необходимо добавить к его мощности 5%;
  • в комнате, в которой окна выходят на северную сторону, к мощности батареи необходимо дополнительно добавить 10%;
  • украшая батарею в своей комнате специальным экраном, следует знать, что он крадет у радиатора некоторое количество тепловой энергии. Поэтому дополнительно необходимо прибавить к радиатору 15%.

Специфика и другие особенности

В помещении, для которого производится расчет потребности в отоплении, может быть и другая специфика. Важными становятся следующие показатели:

  • температура циркулирующего в радиаторах отопления теплоносителя не должна быть ниже 70 градусов. Если уровень температуры меньше, то число секций в приборе отопления необходимо увеличить;
  • в том случае, если между двумя помещениями дверь отсутствует, следует выполнить расчет их общей площади, а потом рассчитать количество радиаторов, необходимых для оптимального обогрева;
  • в помещениях, в которых на окнах установлены стеклопакеты, потери тепла сведены к минимуму. Поэтому при выборе радиатора отопления можно устанавливать изделие с меньшим количеством секций.

Климатические зоны

Каждый знает, что каждая климатическая зона имеет свои потребности в обогреве. Поэтому при разработке проекта необходимо принимать во внимание эти показатели.

У каждой климатической зоны имеются свои коэффициенты, которые необходимо использовать при расчетах.

Для средней полосы России этот коэффициент равен 1. Поэтому он не используется при расчетах.

В северных и восточных регионах страны коэффициент равен 1,6.

В южной части страны этот показатель варьируется от 0,7 до 0,9.

При выполнении расчетов необходимо на этот коэффициент умножить тепловую мощность. А потом на теплоотдачу одной секции разделить полученный результат.

Заключение

Расчет отопления в помещении очень важен для обеспечения теплой атмосферы в жилище в зимнее время. Больших сложностей с выполнением расчетов обычно не возникает. Поэтому каждый владелец может осуществить их самостоятельно, не прибегая к услугам специалистов. Достаточно найти формулы, которые используются для расчетов.

В этом случае можно сэкономить на приобретении радиатора, так как вы будете избавлены от необходимости платить за ненужные секции. Установив их на кухне или в гостиной, в вашем жилище будет царить комфортная атмосфера.

Если вы неуверены в точности своих расчетов, из-за которых вы не подберете оптимальный вариант, то следует обратиться к профессионалам.

Важно

Они правильно произведут расчеты, а после качественно выполнят установку новых радиаторов отопления или грамотно проведут монтаж системы отопления.

Источник: https://kotel.guru/radiatory/raschet-otopleniya-dlya-doma-po-ploschadi-pomescheniya.html

Расчет мощности обогревателя

Прежде чем выбирать обогреватель, необходимо рассчитать минимальную тепловую мощность, необходимую для вашего конкретного помещения.

Обычно для приблизительного расчета достаточно объем помещения в кубических метрах разделить на 30. Таким способом обычно и пользуются менеджеры, консультируя покупателей по телефону. Такой расчет позволяет быстро приблизительно прикинуть какая совокупная тепловая мощность может понадобиться для прогрева помещения.

Например, для выбора тепловой пушки в комнату (или офис) площадью 50 м² и высотой потолков 3 м (150 м³) потребуется 5.0 кВт тепловой мощности. Наш расчет выглядит так: 150 / 30 = 5.0

Такой вариант расчетов в основном используется для расчетов дополнительного обогрева в те помещения, где уже есть какое-то отопление и необходимо просто догреть воздух до комфортной температуры.

Однако, такой способ расчета не подойдет для неотапливаемых помещений, а также если необходимо помимо объема помещения учесть разницу температур внутри-снаружи, и конструктивные особенности самого здания (стены, изоляцию и т. п.)

Точный расчет тепловой мощности обогревателя:

Для расчета тепловой мощности, учитывающего дополнительные условия помещения и температурные режимы, используется следующая формула:

V × ΔT × K = ккал/час, или

V × ΔT × K / 860 = кВт, где

V — Объем обогреваемого помещения в кубических метрах;

ΔT — Разница между температурами воздуха внутри и снаружи. Например, если температура воздуха снаружи -5 °C, а необходимая температура внутри помещения +18 °C, то разница температур составляет 23 градуса;

K — Коэффициент теплоизоляции помещения. Он зависит от типа конструкции и изоляции помещения.

K=3.0–4.0 — Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа. Без теплоизоляции.

K=2.0–2.9 — Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши. Небольшая теплоизоляция.

K=1.0–1.9 — Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей. Средняя теплоизоляция.

K=0.6–0.9 — Улучшенная конструкция здания, кирпичные стены с двойной изоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала. Высокая теплоизоляция.

При выборе значения коэффициента теплоизоляции обязательно нужно учитывать старое это здание или новое, т. к. старые здания требуют большего количества тепла для прогрева (соответственно, значение коэффициента должно быть выше).

Для нашего примера, если учесть разницу температур (например, 23 °C) и уточнить коэффициент теплоизоляции (например, у нас старое здание с двойной кирпичной кладкой, возьмем значение 1.9), то расчет необходимой тепловой мощности обогревателя будет выглядеть так:

Совет

150 × 23 × 1.9 / 860 = 7.62

Т. е., как видите, уточненный расчет показал, что для прогрева данного конкретного помещения понадобится большая тепловая мощность обогрева, чем была рассчитана по упрощенной формуле.

Подобный способ расчета применим к любым видам теплового оборудования, за исключением, возможно, инфракрасных обогревателей, т. к. там используется принцип ощущаемого тепла. Для любых других видов обогревателей — водяных, электрических, газовых и жидкотопливных, он подходит.

После вычисления необходимой тепловой мощности можно приступать к выбору типа и модели обогревателя.

Источник: http://www.KlimDom.ru/raschet_mochnosti_obogrevatelya.html

Расчёт тепловой мощности, точный и упрошенный

Начало выполнения подготовки проекта отопления, как жилых загородных домов, так и производственных комплексов, следует с теплотехнического расчёта. В качестве источника тепла предполагается тепловая пушка.

Что представляет собой теплотехнический расчёт?

Расчёт тепловых потерь является основополагающим документом, призванным решать такую задачу, как организация теплоснабжения сооружения.

Он определяет суточное и годовое потребление тепла, минимальную потребность жилого либо промышленного объекта в тепловой энергии и тепловые потери для каждого помещения.

Решая такую задачу, как теплотехнический расчёт, следует учитывать комплекс характеристик объекта:

Читайте также:  Как сложить печь из кирпича своими руками?

Зачем нужен теплотехнический расчёт?

  • Чтобы определить мощность котла.Предположим, Вы приняли решение снабдить загородный дом либо предприятие системой автономного отопления. Чтобы определиться с выбором оборудования, в первую очередь потребуется рассчитать мощность отопительной установки, которая понадобится для бесперебойной работы горячего водоснабжения, кондиционирования, систем вентиляции, а также эффективного обогрева здания. Определяется мощность автономной отопительной системы, как общая сумма тепловых затрат на обогрев всех помещений, а также тепловых затрат на прочие технологические нужды. Отопительная система должна обладать определённым запасом мощности, чтобы работа при пиковых нагрузках не сократила срок её службы.
  • Для выполнения согласования на газификацию объекта и получения ТУ.Получить разрешение на газификацию объекта необходимо в том случае, если используется природный газ в качестве топлива для котла. Для получения ТУ потребуется предоставить значения годового расхода топлива (природного газа), а также суммарные значения мощности тепловых источников (Гкал/час). Эти показатели определяются в результате проведения теплового расчёта. Согласование проекта на осуществление газификации объекта – это более дорогостоящий и продолжительный метод организации автономного отопления, по отношению к монтажу отопительных систем, функционирующих на отработанных маслах, установка которых не требует согласований и разрешений.
  • Для выбора подходящего оборудования.Данные теплового расчёта являются определяющим фактором при выборе приборов для отопления объектов. Следует учитывать множество параметров – ориентацию по сторонам света, габариты дверных и оконных проёмов, размеры помещений и их расположение в здании.

Как происходит теплотехнический расчёт

Можно воспользоваться упрощённой формулой, чтобы определить минимально допустимую мощность тепловых систем:

, где

Qт – это тепловая нагрузка на определённое помещение; K – коэффициент теплопотерь здания;

V – объём (в м3) отапливаемого помещения (ширина комнаты на длину и высоту);

ΔT – разница (обозначена С) между необходимой температурой воздуха внутри и температурой снаружи.

Такой показатель, как коэффициент потерь тепла (К), зависит от изоляции и типа конструкции помещения. Можно использовать упрощённые значения, рассчитанные для объектов разных типов:

  • K = от 0,6-ти до 0,9-ти (повышенная степень теплоизоляции). Небольшое количество окон, снабжённых сдвоенными рамами, стены из кирпича с двойной теплоизоляцией, крыша из высококачественного материала, массивное основание пола;
  • К = от 1-го до 1,9-ти (теплоизоляция средней степени). Двойная кирпичная кладка, крыша с обычной кровлей, небольшое количество окон;
  • K = от 2-х до 2,9 (низкая теплоизоляция). Конструкция сооружения упрощённая, кирпичная кладка одинарная.
  • K = 3-х – 4-х (отсутствие теплоизоляции). Сооружение из металлического или гофрированного листа либо упрощённая деревянная конструкция.

Определяя разницу между требуемой температурой внутри обогреваемого объёма и температурой снаружи (ΔT), следует исходить из степени комфорта, которую Вы желаете получить от тепловой установки, а также из климатических особенностей того региона, в котором находится объект. В качестве параметра по умолчанию принимаются значения, определённые CHиП 2.04.05-91:

  • +18 – общественные здания и производственные цеха;
  • +12 – комплексы высотного складирования, склады;
  • + 5 – гаражи, а также склады без постоянного обслуживания.
Город Расчётная наружная температура, °C Город Расчётная наружная температура, °C
Днепропетровск – 25 Каунас – 22
Екатеринбург – 35 Львов – 19
Запорожье – 22 Москва – 28
Калининград – 18 Минск – 25
Краснодар – 19 Новороссийск – 13
Казань – 32 Нижний Новгород – 30
Киев – 22 Одесса – 18
Ростов – 22 Санкт-Петербург – 26
Самара – 30 Севастополь – 11
Харьков – 23 Ялта – 6

Расчёт по упрощённой формуле не позволяет учитывать различия тепловых потерь здания в зависимости от типа ограждающих конструкций, утепления и размещения помещений.

Так, например, больше тепла потребуют комнаты с большими окнами, высокими потолками и угловые помещения. В то же время минимальными тепловыми потерями отличаются помещения, которые не имеют внешних ограждений.

Желательно использовать следующую формулу при расчёте такого параметра, как минимальная тепловая мощность:

, где

S – площадь комнаты, м2;
Bт/м2 – удельная величина потерь тепла (65-80 ватт/м2). В этот показатель входят утечки тепла через вентиляцию, поглощения стенами, окнами и прочие виды утечек;
К1 – коэффициент утечки тепла через окна:

  • при наличии тройного стеклопакета К1 = 0,85;
  • если стеклопакет двойной, то К1 = 1,0;
  • при стандартном остеклении К1 = 1,27;

К2 – коэффициент потерь тепла стен:

  • высокая теплоизоляция (показатель К2 = 0,854);
  • утеплитель толщиной 150 мм либо стены в два кирпича (показатель К2=1,0);
  • низкая теплоизоляция (показатель К2=1,27);

К3 – показатель, определяющий соотношение площадей (S) окон и пола:

  • 50% КЗ=1,2;
  • 40% КЗ=1,1;
  • 30% КЗ=1,0;
  • 20% КЗ=0,9;
  • 10% КЗ=0,8;

К4 – коэффициент температуры вне помещения:

  • -35°C K4=1,5;
  • -25°C K4=1,3;
  • -20°C K4=1,1;
  • -15°C K4=0,9;
  • -10°C K4=0,7;

К5 – количество выходящих наружу стен:

  • четыре стены К5=1,4;
  • три стены К5=1,3;
  • две стены К5=1,2;
  • одна стена К5=1,1;

К6 – тип теплоизоляции помещения, которое располагается над отапливаемым:

  • обогреваемое К6-0,8;
  • теплая мансарда К6=0,9;
  • не отапливаемый чердак К6=1,0;

К7 –высота потолков:

  • 4,5 метра К7=1,2;
  • 4,0 метра K7=1,15;
  • 3,5 метра К7=1,1;
  • 3,0 метра К7=1,05;
  • 2,5 метра K7=1,0.

Приведём в качестве примера расчёт минимальной мощности отопительной автономной установки (по двум формулам) для отдельно стоящего сервисного помещения СТО (высота потолка 4м, площадь 250 м2, объём 1000 м3, окна большие с обычным остеклением, теплоизоляция потолка и стен отсутствует, конструкция – упрощённая).

По упрощённому расчёту:

, где

V – объем воздуха в отапливаемом помещении (250 *4), м3; ΔT – разница показателей между температурой воздуха извне комнаты и требуемой температурой воздуха внутри помещения (30°С); К – коэффициент теплопотерь строения (для зданий без теплоизоляции К = 4,0);

860 – перевод в кВт/час.

Более точный расчёт:

, где

S – площадь помещения, для которого выполняется расчёт (250 м2); K1 – параметр утечки тепла через окна (стандартное остекление, показатель К1 равен 1,27); К2 – значение утечки тепла через стены (плохая теплоизоляция, показатель К2 соответствует 1,27); К3 – параметр соотношения габаритов окон к площади пола (40%, показатель К3 равен 1,1); K4 – значение температуры снаружи (-35 °C, показатель K4 соответствует 1,5); K5 – количество стен, которые выходят наружу (в данном случае четыре К5 равен 1,4); К6 – показатель, определяющий тип помещения, расположенного непосредственно над отапливаемым (чердак без утепления К6=1,0);

K7 – показатель, определяющий высоту потолков (4,0 м, параметр К7 соответствует 1,15).

Как можно видеть из произведённого расчёта, вторая формула предпочтительнее для расчёта мощности отопительных установок, поскольку она учитывает гораздо большее количество параметров (особенно если необходимо определить параметры маломощного оборудования, предназначенного для эксплуатации в небольших помещениях).

К полученному результату надо приплюсовать небольшой запас по мощности для увеличения срока эксплуатации теплового оборудования.
Выполнив несложные расчёты, Вы сможете без помощи специалистов определить необходимую мощность автономной отопительной системы для оснащения объектов жилого или промышленного назначения.

Купить тепловую пушку и другое обогреватели можно на сайте компании или посетив наш розничный магазин.

Источник: https://www.Komplektacya.ru/spravochnik/teplovoe-oborudovanie1/raschet-teplovoj-moschnosti

Расчет тепловой мощности для выбора нагревателя

Товар добавлен в корзину.

Итого:  Р

Продолжить покупки Перейти в корзину

01.06.2015

Расчет тепловой мощности обогрева помещения

Для правильного выбора нагревателя, предлагаем вам ознакомиться с правилами расчета тепловой мощности, необходимой для вашего конкретного случая применения:

V x ∆T x K = ккал/ч

Обозначения:

V   – Объем обогреваемого помещения (длина х ширина х высота), м3

∆Т – Разница между ˚t воздуха вне помещения и необходимой ˚t внутри помещения, ˚С

К   – Коэффициент тепловых потерь (зависит от типа конструкции и изоляции помещения):

Без теплоизоляции ( К=3,0-4,0 ) – Деревянная конструкция или конструкция из гофрированного металлического листа.

Простая теплоизоляция ( К=2,0-2,9 ) – Здание с одинарной кирпичной кладкой, упрощенная конструкция окон и крыши.

Средняя теплоизоляция ( К=1,0-1,9 ) – Стандартная конструкция. Двойная кирпичная кладка, крыша со стандартной кровлей, небольшое кол-во окон.

Высокая теплоизоляция ( К=0,6-0,9 ) – Кирпичные стены с двойной теплоизоляцией, небольшое кол-во окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала.

Пример:

Объем помещения: 5 х 16 х 2,5 = 200

∆Т: Температура наружного воздуха -20 °С. Требуемая температура внутри помещения +25 °С. Разница между тем­пературами внутри и снаружи +45 °С.

К:  Рассмотрим вариант со средней теплоизоляцией (1-1,9). Выберите то значение, которое на ваш взгляд, наиболее соответствует вашему помещению. Чем хуже теплоизоляция, тем больший коэффициент нужно выбирать. Например 1,7.

Расчет: 200 х 45 х 1,7 = 15 300 ккалч

1 кВт = 860 ккалч, соответственно 15 300860 = 17,8 кВт.

ВАЖНО! 

Газовые и дизельные калориферы прямого нагрева, можно использовать только в хорошо проветриваемых помещениях, или на открытых пространствах. Дизельные калориферы непрямого нагрева, можно использовать в закрытых помещениях, при условии отвода сгораемых газов за пределы помещения.

Таблица Мощности для помещений:

Расчет мощности можно сделать с помощью данной схемы (ВЫ можете скачать и распечать схему ниже)

Для определения необходимой мощности тепловой пушки или нагревателя воздуха нужно рассчитать минимальную нагревательную мощность для обогрева данного помещения по следующей формуле:

V х ΔT x k = ккал/ч, где:

  • V – объем обогреваемого помещения (длина, ширина, высота), м3;
  • ΔT – разница между температурой воздуха вне помещения и требуемой температурой воздуха внутри помещения, °C;
  • k – коэффициент рассеивания (теплоизоляции здания): k = 3,0-4,0 – без теплоизоляции (упрощённая деревянная конструкция или конструкция из гофрированного металлического листа); k = 2,0-2,9 – небольшая теплоизоляция (упрощённая конструкция здания, одинарная кирпичная кладка, упрощённая конструкция окон); k = 1,0-1,9 – средняя теплоизоляция (стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей);

    k = 0,6-0,9 – высокая теплоизоляция (улучшенная конструкция здания, кирпичные стены с двойной теплоизоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).

Пример:

Объем помещения для обогрева (ширина 4 м, длина 12 м, высота 3 м): V = 4 x 12 x 3 = 144 м3.
Наружная температура -5°C. Требуемая температура внутри +18°C. Разница температур ΔT = 18°C – (-5 C) = 23°C.
k = 4 (здание с низкой изоляцией).

Расчет мощности:

144 м3 x 23°C x 4 = 13 248 ккал/ч – нужная минимальная мощность.

Принимается:

1 кВт = 860 ккал/ч;
1 ккал = 3,97 ВТЕ;
1 кВт = 3412 ВТЕ;
1 БТЕ = 0,252 ккал/ч.

Итого: 13 248 ккал/ч / 860 = 15,4 кВт – нужная минимальная мощность в кВт.

Теперь можно выбрать тип нагревателя.

Таблица тепловой мощности, необходимой для различных помещений

(разница температуры внутри помещения и наружной температуры – 30°С)

тепл. мощн., кВт объём помещения при хорошей теплоизоляции (новое здание), м3 объём помещения при плохой теплоизоляции (старое здание), м3 площадь теплицы из теплоизолированного стекла и с двойной фольгой, м2 площадь теплицы из обычного стекла с фольгой, м2
5 70 ÷ 150 60 ÷ 110 35 18
10 150 ÷ 300 130 ÷ 220 70 37
20 320 ÷ 600 240 ÷ 440 140 74
30 650 ÷ 1000 460 ÷ 650 210 110
40 1050 ÷ 1300 650 ÷ 890 300 150
50 1350 ÷ 1600 900 ÷ 1100 370 180
60 1650 ÷ 2000 1150 ÷ 1350 440 220
75 2100 ÷ 2500 1400 ÷ 1650 550 280
100 2600 ÷ 3300 1700 ÷ 2200 740 370
125 3400 ÷ 4100 2300 ÷ 2700 920 460
150 4200 ÷ 5000 2800 ÷ 3300 1100 550
200 5000 ÷ 6500 3400 ÷ 4400 1480 740

Ответ на вопрос : КУДА УХОДИТ ЛЕТО  ТЕПЛО?

Источник: https://www.invoz.ru/articles/raschet_teplovoi_moshnosti.html

Ссылка на основную публикацию
Adblock
detector