Как работает солнечная батарея: устройство и принцип действия

Принцип работы солнечной батареи – основные особенности функционирования преобразователей

Ещё не так давно автономная система обеспечения электроэнергией была чем-то из области фантастики. Но в последнее время такие устройства приобретают большую популярность. Экономные жители европейских стран уже много лет пользуются солнечными батареями для обеспечения собственных домов электричеством.

В нашей стране такое новшество ещё на стадии развития, хотя некоторые домовладельцы уже успели по достоинству оценить выгоду от таких устройств.

Обратите внимание

В первую очередь, это обусловлено постоянно растущими тарифами на электроэнергию и другие коммунальные услуги.

Благодаря постоянному усовершенствованию современных технологий стоимость солнечных батарей медленно, но уверенно падает, что делает их более доступными для среднестатистического потребителя.

Как устроена солнечная батарея?

Конструктивное исполнение разных моделей устройств для преобразования энергии солнца в электричество имеет одинаковые элементы. Большая часть батарей состоит из следующих составляющих:

  • устройство, генерирующее, постоянный ток;
  • блок аккумуляторных батарей;
  • преобразователь постоянной величины тока в переменную.

В свою очередь, конструкция солнечной батареи состоит из фотоэлектрического преобразователя. При этом в изготовлении таких преобразующих компонентов используют кремний – достаточно дорогой природный материал. На сегодняшний день рассматривают два основных типа фотоэлектрических преобразователей:

  • преобразователи в изготовлении которых используется монокристаллический кремний;
  • приборы из поликристаллического материала.

К важнейшим техническим параметрам всех солнечных батарей можно отнести их коэффициент полезной мощности. Благодаря этому критерию определяется экономичность и качество преобразующего устройства. Полезная мощность определяется на основании показателей тока и напряжения, которые будут зависеть от степени интенсивности солнечных световых потоков, попадающих на фотоэлементы.

Хочется отметить, что величина тока на выходе солнечной батареи зависит не только от интенсивности солнца, но и от габаритов принимающих элементов. Во время дождя или зимой, когда постоянно пасмурно показатели мощности и напряжения в значительной мере снижаются, что обусловлено уменьшением выходного тока.

Если батарею замкнуть на любой нагрузке с сопротивлением, то по такой цепи начинает протекать ток, величина которого будет зависеть от качества преобразующих элементов и интенсивности потока солнечных лучей. При этом мощностные показатели, выделяемые при нагрузке, будут равны величине тока и напряжения перемноженных между собой.

Максимальных мощностных показателей, потребляемых электрическими приборами можно достичь только при оптимальном сопротивлении, которое должно соответствовать пиковому значению КПД солнечной батареи. При этом каждое преобразующее устройство обладает своим оптимальным размером сопротивления, значение которого будет зависеть от параметров фотоэлектрических преобразователей.

В конструкцию солнечной батареи входят отдельные элементы, соединённые по последовательной или параллельной схеме благодаря чему, улучшаются параметры на выходе. При последовательном соединении увеличивается величина напряжения, а при параллельном — ток. Обычно на практике используют комбинацию методов соединения что позволяет увеличить общие выходные параметры прибора.

Преимуществом комбинированного варианта соединения фотоэлементов является и то что в значительной мере увеличивается надёжность солнечной батареи. В первую очередь — это обусловлено тем, что при выходе из строя отдельно взятого элемента это практически не повлияет на качество работы устройства в целом.

Важно

Для увеличения надёжности солнечных батарей их элементы шунтируются с помощью диодов. При этом для каждого фотоэлектрического элемента используется по 4 диода. Благодаря этому отдельные элементы, на которые не попадает свет не выходят из строя. В такой ситуации приблизительно на четверть уменьшается генерируемая выходная мощность.

Если пренебречь установкой диодов, то из-за перегрева элементы принимающие солнечные лучи будут ломаться, так как при отсутствии света они начинают потреблять ток, а благодаря использованию диодов ток не будет проходить через них.

Солнечные батареи – принцип работы

Все преобразователи световой энергии в электрическую работают по достаточно простому принципу, который известен большинству людей ещё со школьного курса физики. В частности, нужно вспомнить принцип действия p-n перехода. Именно благодаря ему происходит превращение света в электричество.

Такой принцип работы может проиллюстрировать транзистор со срезанным корпусом. Лучи света, попадая, на p-n переход преобразуются в электрический ток, о появлении которого будет свидетельствовать вольтметр, подключённый к выводам.

При этом если увеличить площадь перехода показатели электроэнергии также возрастут. Поэтому все современные батареи имеют достаточно большие габариты, позволяющие в полной мере удовлетворить нужды потребителей в электрической энергии.

С каждым годом происходит усовершенствование материалов и конструкции солнечных батарей, благодаря чему в значительной мере увеличивается коэффициент преобразования солнечной энергии в электрическую. При этом параметры тока и напряжения на выходе прибора зависят от степени освещённости фотоприёмников.

Кремниевые преобразователи солнечной энергии

Солнечными батареями, изготавливаемыми из кремния, вырабатывается ток постоянной величины, образуемый благодаря попаданию на кремневодородные элементы потоков солнечного света.

Особенность материала такова что световые потоки, попадающие на поверхность, производят сдвиг электронов с орбиты атома. Благодаря этому свободные электроны вырабатывают электричество.

Такие преобразователи обладают высокой производительностью, но имеют сложную в изготовлении конструкцию, из-за которой значительно возрастает цена устройства. При этом на сегодняшний день различают определённые модели кремниевых устройств.

  1. Монокристаллический преобразователь, отличительной особенностью элементов которого является общая направленность чувствительных к свету ячеек в одном направлении. Это, в свою очередь, позволяет работать солнечной батарее с максимальным коэффициентом КПД. Но для качественной работы фотоприёмники должны быть постоянно развёрнуты к свету.
  2. Поликристаллическое устройство работает благодаря пластинам, состоящим, из разнонаправленных кристаллов кремния что снижает уровень КПД на несколько процентов. Также такие солнечные батареи отличаются внешне, так как состоят из пластин с правильной формой и тёмно-синим окрасом. Неоднородность оттенка и структуры таких устройств обусловлена разнородностью кристаллов кремния и наличием различных примесей.
  3. Аморфное преобразующее устройство представляет собой тончайшие кремниевые слои, получаемые путём напыления материала в условиях вакуума. В качестве основы берут высококачественную металлическую фольгу, стекло или полимерные материалы. Такие солнечные батареи имеют незначительный КПД по сравнению с другими преобразователями. Это в первую очередь обусловлено повышенным выгоранием кремниевого слоя под влиянием радиации солнечных лучей. Как стало известно, из практики качество работы аморфного преобразователя через несколько месяцев снижается на 25%, а по прошествии нескольких лет солнечная батарея совсем перестаёт работать.
  4. Гибридный фотопреобразователь – устройство, объединившее в себе аморфные панели и микрокристаллический кремний. Качество работы гибридного преобразователя приближено к характеристикам поликристаллического аналога, с единственным отличием в том, что уровень КПД даже при рассеянном свете на порядок выше. Помимо этого, такие солнечные батареи могут преобразовывать как ультрафиолетовый спектр, так и инфракрасное излучение.

Полимерный преобразовать солнечной энергии

Полимерный преобразователь солнечной энергии в электрическую – перспективный вариант замены кремниевого аналога. Прибор состоит из плёнки с полимерным активным слоем, электродов из алюминия и подложки с высокой гибкостью. Благодаря объединению всех фотоэлементов между собой получается устройство рулонного типа.

Такие солнечные батареи достаточно гибкие и имеют незначительный вес. При этом их стоимость намного ниже чем у аналогов из кремния, который является дорогостоящим материалом. Помимо этого, такие системы обладают высокой экологичностью что очень актуально на сегодняшний день.

Хочется отметить, что полимерные солнечные батареи имеют невысокий КПД. Для широкого потребителя первые такие устройства начали производить в Дании.

Совет

При этом сама процедура производства происходит за счёт многослойной печати фотоэлементов на специальной гибкой плёнке, которую можно разрезать по любым размерам что очень удобно. Стоимость плёночного элемента намного меньше чем у аналогов из кремния.

Но повстречать такую солнечную батарею на прилавках магазинов практически невозможно. Процесс производства только входит в начальную стадию развития.

Работа солнечной батареи в плохую погоду

Солнечная батарея – замечательный источник электричества, придуманный человеком. Но из-за того, что основной работы таких устройств является солнечный свет, то если на улице дождь или тучи, эффективность их работы падает в разы. Особенно это актуально в осенне-зимний период года, когда погода не балует большим количеством солнечных дней.

Исходя из опыта использования солнечных источников электричества, зимой коэффициент производимой энергии падает практически в 5 раз. А если взять во внимание, что производительность таких устройств изначально ниже стандартного электроснабжения, то использование солнечных батарей зимой или в пасмурную погоду практически бессмысленно.

Помимо этого, при выпадении снега нужно выполнять очистку панелей, причём делать это нужно с максимальной осторожностью, так как любой дефект или повреждение фотоэлементов значительно снизит работу батареи в целом. А если говорить об осадках в виде града, то они просто губительны для солнечных батарей, так как все модули от механических ударов льдинок приходят в полную негодность.

Естественно, на сегодняшний день можно увеличить производительность солнечного источника электроэнергии в пасмурную погоду или зимой. Для этого были разработаны специальные приборы, отслеживающие положение солнца.

Это позволяет моноблоку располагаться под правильным углом к источнику света. В первую очередь — это важно по той простой причине, что даже незначительное отклонение батареи от солнца сильно снижает её производительность.

И чем сильнее угол отклонения, тем меньше электричества вырабатывается устройством.

Источник: https://elektro.guru/elektrooborudovanie/avtonomnoe-elektrichestvo/solnechnye-batarei-vidy-i-princip-raboty-preobrazovateley.html

Принцип работы и строение солнечных батарей

Бесплатную и бесконечную солнечную энергию люди используют для электроснабжения своих домов и предприятий. Принцип работы солнечной батареи таков, что сегодня нельзя рассчитывать на высокий уровень КПД. Однако в мире существует множество объектов, которые обеспечивают себя электроэнергией исключительно с помощью солнечных панелей.

Научитесь использовать солнечную энергию в свое благо

Понятие солнечной энергетики

Солнечная энергетика — это тематика, в которой имеется очень много неразберихи и нюансов. Попытки разобраться в ней часто вызывают трудности у новичков и людей, далёких от техники. Но без понимания принципа действия солнечных батарей не получится выжать максимальный КПД. В этом случае приобретение оборудования бессмысленно, ведь можно выбрать не ту модель или попросту сжечь технику.

Чтобы избежать неприятных последствий, нужно разобраться с разновидностями оборудования для получения энергии от солнечных лучей. Существует два типа устройств, имеющих принципиальные различия между собой. Солнечные батареи используются для преобразования фотонов в электрическую энергию. Коллекторы применяются для получения тепловой энергии.

Также нужно разобраться с самим понятием солнечной батареи. Слово «батарея» подразумевает какое-либо накопительное устройство, но это не совсем так. Солнечная батарея используется только для выработки электроэнергии. В течение дня электрическая энергия накапливается в аккумулирующих устройствах для обеспечения дома в ночное время.

Читайте также:  Замена стояков отопления — нюансы

Из данного видео узнаем как устроена солнечная батарея:

Устройство гелиобатареи

С каждым годом оборудование для преобразования солнечной энергии в электрическую становится всё доступнее и дешевле. Сегодня существуют не только стационарные панели для обеспечения электроэнергией домов и хозяйственных построек, но и портативные.

Они используются туристами для зарядки телефонов, фонариков и других устройств. Солнечные панели устанавливают на электрические автомобили. Также они используются на космических спутниках. Из таких батарей даже начали строить полномасштабные электростанции.

Строение солнечной батареи подразумевает блок, состоящий из какого-либо количества модулей — полупроводниковых фотоэлементов, соединённых между собой последовательно. Чтобы выяснить принцип работы солнечных панелей, нужно понять действие конечного элемента всего устройства.

Фотоэлемент состоит из двух слоёв кремния, каждый из которых имеет различные физические свойства. Во время попадания солнечных лучей на фотоэлемент между двумя слоями появляется вентильная фото-ЭДС. Из-за этого появляется разность потенциалов и возникает электрический ток. Различаются солнечные батареи по принципу производства на:

  • поликристаллические;
  • монокристаллические.

У монокристаллических моделей КПД больше, но и стоимость их производства выше по сравнению с поликристаллическими устройствами. Оба вида отличаются между собой по внешним признакам. Монокристаллы имеют однородную структуру. Они представляют собой квадраты, имеющие срезанные углы. У поликристаллов правильная квадратная форма.

Солнечные батареи – удовольствие не из дешевых, однако в будущем они помогут сэкономить вам деньги

Поликристаллические фотоэлементы производят методом плавного остывания расплавленного кремния.

Это довольно простая технология, поэтому себестоимость такого материала относительно низкая. Но КПД поликристаллов составляет не больше 15%.

Кремниевые пластины, произведённые по такой технологии, получаются неоднородной структуры и с примесями.

Принцип работы

Фотоны попадают на кремниевую пластину, в которой появляются неравновесные пары. Часть появившихся зарядов переходит из одного кремниевого слоя в другой. Из-за этого образуется напряжение на всех участках цепи. На одном слое образуется положительный заряд, на другом — отрицательный.

Подключение аккумулятора производится в виде внешней нагрузки. Он образует с фотоэлементами замкнутую цепь. Электроны в солнечной панели движутся по кругу, в результате чего аккумулятор постепенно заряжается.

Фотоэлементы, применяемые повсюду, являются однопереходными. Это значит, что электроны движутся всего через один переход и имеют ограниченную зону, то есть для генерации электричества используется только часть всего излучаемого спектра. Именно поэтому у гелиобатарей довольно низкая энергоэффективность.

Обратите внимание

Для повышения коэффициента полезного действия батарей кремниевые составляющие начали изготавливать каскадными и имеющими много переходов. Новые солнечные панели снабжены несколькими ходами, каждый из которых предназначен для своего конкретного спектра. Но такие батареи стоят намного дороже.

Во время работы всё устройство медленно нагревается. Энергия, которая не перешла в электрический ток, трансформируется в тепловую. Температура поверхности батареи может составлять от +50 до +55°С. Чем сильнее разогревается фотоэлемент, тем хуже он работает.

Эффективность устройства

Единичный фотоэлемент даже в самую ясную погоду выдаёт слишком мало электроэнергии. Его мощности будет хватать только на светодиоды. Для увеличения мощности объединяют несколько таких элементов в параллельную цепь. Это усиливает напряжение. Повышение силы тока осуществляется за счёт последовательных соединений. Эффективность батарей зависит от:

  • силы светового потока;
  • температуры панели;
  • угла падения света;
  • наличия антиотражающего покрытия.

Чем холоднее вокруг, тем эффективнее функционирует всё оборудование. Также для поддержания максимального КПД необходимо установить контроллер. Он автоматически подстраивает гелиопанель и настраивает оптимальный режим работы в зависимости от выдаваемого тока.

Для получения максимальной отдачи батареи нужно подобрать правильный угол падения лучей. Идеальный угол — прямой. Отклонение от перпендикуляра в пределах 30° практически не оказывает влияния на энергоэффективность оборудования.

Также нужно обратить внимание на то, что пыль и любые загрязнения очень понижают производительность фотоэлементов. Множество фотонов просто не могут пройти сквозь грязь, поэтому фотоэлементам нечего перерабатывать в электроэнергию. Поверхности батарей необходимо регулярно мыть.

В некоторых моделях фотонных батарей встроены линзы для фокусирования света на фотоэлемент. Это значительно повышает КПД, но только в ясную погоду. В пасмурный день такие модели практически полностью перестают вырабатывать электричество. Обычные панели в такой ситуации продолжили бы работать.

Схема электропитания

В цепь солнечного электроснабжения дома входит несколько элементов. Каждый из них выполняет свою функцию и должен присутствовать в системе. Электропитание от гелиобатареи включает такие устройства:

  • панели;
  • инвертор;
  • контроллер;
  • аккумуляторы.

Контроллер выполняет защитную функцию как для панелей, так и для аккумуляторов. Он не даёт проходить обратным токам ночью и в облачную погоду, а также защищает АКБ от полной разрядки или чрезмерной зарядки.

Инвертор трансформирует постоянный ток в переменный. Из 12 Вт или 24 Вт получается 220 Вт. Не стоит включать в систему автомобильные аккумуляторы, так как они не способны переносить постоянные заряды и разряды. Лучше всего для этой цели использовать специализированные аккумуляторы.

Источник: https://kaminguru.com/obogrevatel/stroenie-solnechnyh-batarej.html

Как устроена солнечная батарея?

Казалось бы, совсем недавно солнечная батарея прочно ассоциировалась с космическими кораблями, орбитальными станциями и луноходами. А сейчас, устройство, способное извлекать электричество из света можно обнаружить в любом калькуляторе.

Более того, в богатых солнечным светом странах с жарким летом и мягкой зимой (ученые называют их «страны с высокой инсоляцией»), таких как Италия, Испания, Португалия, южные штаты США и т.д. Солнечная энергетика является заметной статьей экономии средств на электро- и теплоснабжение.

Причем экономия эта происходит как по частной инициативе граждан, так и в виде обязательных к выполнению государственных нормативных актов, как например в Испании.

Солнечная энергия может развязать энергетическую проблему всего мира

Попытки заставить работать на себя энергию солнца предпринимались человечеством давно, так по легенде Архимед сжег римский флот, приказав сфокусировать множеством зеркал (в другой версии – начищенных до блеска щитов) солнечный свет на парусах римских галер. Но заметные результаты попытки подчинения энергии солнца дали только в прошлом веке. Какие же существуют пути использования солнечной энергии?

Как получить электричество

Самый очевидный путь – это преобразование световой энергии солнца в тепловую. Строго говоря, это даже преобразованием назвать нельзя, ведь свет и тепло имеют одну и ту же природу и отличаются лишь частотой, правильнее будет говорить о сборе тепла.

Для сбора солнечного тепла устройства, которые так и называются — солнечные коллекторы («коллектор» буквально означает сборщик). Принцип их действия предельно прост – теплоноситель (вода, реже воздух) нагревается в сделанном из теплопоглощающего материала радиаторе.

Такие устройства имеют широкое применение для горячего водоснабжения частных домов.

Важно

Другой интересный способ использования энергии ближайшего светила подсказывает нам природа. За миллионы лет эволюции растения научились преобразовывать энергию солнца в энергию химических связей, синтезируя из простых веществ сложное соединение – глюкозу. Тот, кто не прогуливал в школе ботанику, конечно, догадался, что речь идет о фотосинтезе.

Но не каждый задумывался об энергетической сущности этого процесса, состоящей как раз в накоплении солнечной энергии и дальнейшего ее использования (в том числе зимой) в «личных» целях. То есть речь идет о биоэнергетике. Реальной, а не той, о которой рассказывают доморощенные маги.

Способ использования энергии солнца по такому принципу работы еще только ждет своего применения в рукотворной технике.

Процесс сбора тепловой энергии происходит в коллекторах

Как уже говорилось выше, самый простой способ использования в личных целях энергию солнца – это сбор тепловой энергии. Однако «самый простой» не всегда означает «самый лучший».

Дело в том, что тепловая энергия – это, можно сказать, «скоропортящийся продукт». Попробуйте «законсервировать» тепло или передать его на большие расстояния. Скорее всего, затраты перекроют все возможные выгоды.

Наиболее удобным для накопления и транспортировки видом энергии является электричество. Его можно без особых проблем собрать в аккумуляторах либо передать по проводам к месту, где оно будет работать, с минимальными потерями.

Отсюда следует третий, самый распространенный способ использования солнечного света – преобразование его в электрическую энергию.

Как это работает

Преобразование солнечного света происходит в батареях (то есть последовательно подключенных группах) фотоэлементов, которые подучили название «солнечные батареи». По какому же принципу работают солнечные батареи?

Процесс преобразования солнечного света

Сердцем фотоэлемента является кремниевый кристалл. С кремнием (точнее его оксидами) мы встречаемся каждый день – это знакомый нам песок.

Таким образом, можно сказать, что кремниевый кристалл – это выращенная в лаборатории гигантская песчинка.

Кристаллам придают форму куба и режут на платины толщиной в двести микрон (примерно три-четыре толщины человеческого волоса).

Совет

На кремниевую пластинку с одной стороны наносят тончайший слой фосфора, с другой стороны – тончайший слой бора. Там, где кремний контактирует с бором, возникает избыток свободных электронов, а там, где кремний контактирует с фосфором, наоборот электроны в недостатке, возникают так называемые «дырки».

Стык сред, обладающих избытком и недостатком электронов, называется в физике p-n переход. Фотоны света бомбардируют поверхность пластины и вышибают избыточные электроны фосфора к недостающим электронам бора. Упорядоченное движение электронов – это и есть электрический ток. Осталось только «собрать» его, проведя через пластину металлические дорожки.

Так в принципе устроен кремниевый фотоэлемент.

Мощность одной пластинки-фотоэлемента довольно скромная, ее хватит разве что для работы лампочки карманного фонарика. Поэтому отдельные элементы собирают в системы-батареи. Теоретически можно собрать из элементов батарею любой мощности.

Батарею укладывают на металлическую подложку, армируют для повышения прочности и накрывают стеклом.

Важно, что солнечная батарея преобразует в электричество не только видимую, но и ультрафиолетовую часть солнечного спектра, поэтому стекло, покрывающее батарею обязательно должно пропускать ультрафиолет.

Важным преимуществом солнечной батареи является то, что она использует свет, а не тепло, поэтому, в отличие от коллектора, солнечная батарея может работать и зимой, лишь бы облачность не закрывала солнечный свет.

Существуют проекты строительства огромных полей солнечных батарей в Арктике и Антарктике, которые будут накапливать энергию во время полугодового полярного дня, который на севере наступает летом, а на юге – зимой, то есть две гигантских солнечных электростанции никогда не будут бездействовать одновременно.

Читайте также:  Как утеплить потолок бани своими руками (фото)

Это все в далекой перспективе, а извлечь пользу из свойств солнечной батареи можно уже сегодня, оборудовав свое жилище миниатюрной гелиоэлектростанцией. Такая станция конечно вряд ли сможет полностью удовлетворить потребности хозяйства в электричестве, но, без сомнения, станет чувствительным фактором экономии семейного бюджета.

Источник: http://energomir.biz/alternativnaya-energetika/solnce/princip-raboty-solnechnoj-batarei.html

Устройство и работа солнечной батареи

Принцип работы солнечной батареи основан на фотоэлектрическом эффекте, вне зависимости от ее разновидности и устройства.

Характеристика устройств

Ученым удалось обнаружить природные вещества, в которых происходит преобразование света в электроэнергию. Этот процесс они стали называть фотоэлектрическим эффектом. Впоследствии им удалось научиться управлять этим явлением. Потом благодаря полупроводниковым материалам они смогли создать небольшие эффективные приборы – фотоэлементы.

После этого было налажено производство миниатюрных преобразователей и эффективных гелиопанелей. КПД кремниевых панелей составляет 18–22%.

Устройство солнечного модуля

Из данных модулей собирают солнечные батареи, преобразующие фотоны солнечной энергии в постоянный ток, накапливающийся в аккумуляторах или трансформирующийся в переменный ток напряжением 220 V, необходимый для питания многих бытовых и промышленных электроприборов.

Такие источники питания незаменимы для удаленных районов, где нет централизованного электроснабжения или часто случаются перебои с электричеством. Кроме того, они позволяют экономить затраты на электроснабжение в быту и в некоторых отраслях промышленности.

Разновидность солнечных батарей

В зависимости от материала изготовления и способа производства, солнечные батареи подразделяют на кремниевые и плёночные.

Кремневые элементы – это устройства, сделанные из кремния, так как этот химический элемент обладает повышенной производительностью, поэтому на него сейчас огромный спрос на мировом рынке. По структуре их подразделяют на три подтипа.

Монокристаллические батареи

Это солнечные батареи состоят из силиконовых ячеек, соединенных между собой. Их удается создавать только из чистейшего кремния, который добывают с помощью выращивания кристаллов.

Когда монокристалл становится твёрдым, его делят на тончайшие пластинки, которые соединяют между собой с помощью сетки из металлических электродов.

Такая технология изготовления очень дорогая и трудоемкая, поэтому её используют меньше, хотя у монокристаллических батарей высокий КПД, около 22%.

Монокристаллические солнечные батареи

Поликристаллические батареи

Это солнечные батареи состоят из поликристаллов, полученных благодаря постепенному охлаждению сплава кремния. Данная технология изготовления обходится дешевле. Но в этом случае понижается КПД на 4–5%. Это характеризуется тем, что в поликристаллах образуются зоны с зернистыми границами, именно они понижают эффективность поликристаллических батарей.

Устройство поликристаллической батареи

Аморфные батареи

Это солнечные батареи делают из кремневодорода или силана. У аморфных батарей маленький КПД, порядка 5%, но они обладают многими достоинствами:

  • гибкие;
  • эффективно работают в пасмурную погоду;
  • очень тонкие (1 мкм).

Плёночные батареи подразделяются на несколько видов:

  • на основе теллурида кадмия;
  • на основе сплава меди, индия и селена, их КПД достигает 16–20%;
  • полимерные фотоэлементы из органики, у которых КПД небольшой 5–6%.

Аморфная солнечная батарея — устройство

Принцип работы

На отрицательно заряженную панель воздействует солнечный свет, при этом образуется еще множество отрицательных зарядов и «пустот». Электрическое поле, присутствующее в p-n переходе, разделяет положительные и отрицательны частицы.

При этом положительные переходят в верхний слой, а отрицательные в нижний. Это приводит к разности потенциалов, в результате возникает постоянное напряжение. Поэтому становится ясно, что каждый фотопреобразователь действует как батарейка.

И если к нему подключить нагрузку, в цепи возникнет ток. При этом его сила зависит от следующего:

  • степень инсоляции;
  • габариты фотопреобразователя;
  • вид фотоэлемента;
  • полное сопротивление подключенных электроприборов.

Схема работы солнечного электроснабжения

Когда рассматривается схема солнечной батареи, то становятся заметны в ней загадочные наименования узлов. Но на первый взгляд, схема электрической цепи и устройство батареи выглядят просто.

Панели плоской формы хорошо ложатся на поверхностях. Модульные блоки соединяются с помощью взаимосвязанных подключений в гелиобатарею. Главная цель устройства – это трансформация энергии света в постоянный ток необходимой величины.

Схема соединения солнечных батарей

Аккумуляторы – это устройства, накапливающие электричество. Когда потребители подключены к электрической сети, энергонакопители сохраняют в себе излишки электроэнергии.

Аккумуляторный блок питает сеть нужным объемом энергии и в то же время поддерживает в ней стабильное напряжение, после возрастания величины потребления до высоких значений.

Это бывает ночью и в пасмурную погоду, когда не работают солнечные панели.

Контроллер является посредником между солнечным модулем и аккумуляторами. Он корректирует степень заряженности батарей и защищает их от выкипания, что может произойти от перезарядки или уменьшения электрического потенциала ниже приделов, требуемых для стабильного функционирования системы.

Обратите внимание

Инвертор – это узел, который выполняет функцию трансформации постоянного тока солнечных панелей и аккумуляторов в переменный ток напряжением 220V. Именно это напряжение требуется для большинства бытовых и промышленных электроприборов.

Принцип работы солнечной батареи

Пример устройства

Основной смысл подключения солнечных источников электропитания в точном определении нагрузки и правильной настройке контролёра заряда. Самая примитивная схема представлена в устройстве садового фонаря.

Эти фонари сегодня становятся очень популярными за счёт яркого освещения. Конечно, зимой свет фонарей, питающихся с помощью фотоэлектрического эффекта солнечной энергией, не такой яркий.

В этом случае в схему входит фотоэлемент, накопительный аккумулятор и лампа.

Видео по теме: Солнечная батарея (как устроена)

Источник: http://TeplyHouse.ru/istochniki-energii/rabota-solnechnoj-batarei.html

Устройство и принцип работы солнечной батареи

Есть возможность использовать энергию солнца для бытовых целей.

Принцип работы солнечной батареи основан на явлении фотоэффекта. Солнце освещает поверхность радиатора, которая состоит из кремниевых модулей. Кремний преобразует электромагнитное излучение солнца, в результате чего появляется электрический ток. Такую батарею можно также назвать фотоэлектрической панелью.

Устройство солнечной батареи напоминает устройство электрического фонарика. Батарейки в нём соединены последовательно полюсами для суммарного действия на электрическую лампочку.

Полюса на приборах соединены последовательно, а вместо электрической лампочки включены элементы электрической сети дома.

 Каждая фотоэлектрическая панель имеет полюсы с контактами, которые предназначены для её присоединения с другими элементами в электрическую цепь.

Напряжение на контактах устройства меньше того, которое необходимо для работы большинства бытовых электроприборов.

Поэтому для большей эффективности полюса на приборах нужно соединять последовательно.

Лучше выбрать несколько меньших и менее мощных фотоэлектрических приборов, чем одну большую и мощную. В таком случае суммарные потери во всех элементах электросети будут меньше.

Особенности использования

В любую погоду элементы электрической сети дома могут получать электроэнергию от солнечной батареи. Чтобы правильно оценить возможности и правильно применить приборы, нужно знать устройство батареи.

  Нужно учитывать, что мощность излучения солнца, которую получают и преобразуют фотоэлектрические батареи, может составлять единицы киловатт на один кв. м. поверхности Земли.

При этом сила солнечного излучения увеличивается с высотой над уровнем моря, поскольку атмосфера Земли становится тоньше.

Атмосфера ослабляет излучение солнца. Там, где размещение приборов наиболее необходимо, можно получить мощность излучения не более 0,1-0,2 киловатта на один кв.м. При этом КПД фотоэлектрической батареи будет около 15%.  Для нужд в электроэнергии среднего современного дома потребуется площадь панелей в полсотни кв. м. и более.

Важно

Эта величина будет служить удобным ориентиром для определения предварительных расходов на покупку солнечных радиаторов для электрификации частного дома или дачи. Зимой их мощность будет меньше.

Солнце зимой светит слабее, чем летом. При покупке панелей нужно сделать поправку на их количество.

Можно будет получать электроэнергию не только при безоблачном небе. Ток в электрическую сеть дома будет поступать всегда, когда есть даже слабый солнечный свет. Применение радиаторов зимой будет дополнением к централизованному электроснабжению.

Необходимо правильно сконструировать домашнюю электросеть, снабдив её аккумуляторами. Тогда в любую погоду электроэнергия солнечных батарей будет заряжать аккумуляторы при отсутствии электрической нагрузки в сети. Мощность при этом не будет большой, но зато она бесплатна.

Характеристики

  1. Срок службы приборов при их правильной эксплуатации долгий. При этом никакие проблемы с напряжением сети из-за перегрузки не коснутся электросети с фотоэлектрическим батареями. Эта сеть автономна.
  2. Использование панелей предусматривает простую установку их на крыше дома или дачи.
  3. При работе не возникает никаких затруднений.

  4. Одно из самых больших достоинств батарей – их экологическая чистота. Это относится к ним при эксплуатации и при их утилизации. При работе радиаторов в окружающую среду не выделяется никаких веществ. Поскольку фотоэлектрические панели состоят из кремниевых модулей, они не загрязняют окружающую среду.

  5. Такие батареи можно использовать во всех экономически развитых странах. Обычно компании-продавцы обеспечивают полное сервисное обслуживание, в том числе и установку приборов.
  6. Монтаж всех элементов электросети с солнечными панелями должен выполняться специалистами.

Наиболее низкой ценой отличаются китайские фирмы.

Продукция фирм из Японии, Кореи является более дорогой, но более качественной.

Размещение устройства и цена

Стабильность параметров приборов позволяет выполнить расчёт их окупаемости и выбрать наиболее подходящую цену панели. В среднем расходы на покупку солнечных панелей со всеми необходимыми элементами и создание на их основе автономной электрической сети в доме окупаются через 2-3 года.

Источник: https://poluchi-teplo.ru/soln/kak-rabotayut-solnechnyie-batarei.html

Что такое солнечные батареи и как они работают – Stroim24.info

Когда деньги, вложенные в батареи, окупятся, электричество в доме будет действительно бесплатным

Заинтересованы в бесплатной электроэнергии на дачном участке или в загородном доме? Я расскажу про принцип действия и про устройство солнечной батареи, а вы сможете решить, подходит ли такое устройство для того, чтобы сделать дом или дачу энергонезависимыми.

Солнечная батарея (СБ) — это устройство, позволяющее преобразовать световую энергию солнечных лучей в электрический ток. В основе приборов применяются фотоэлементы — полупроводниковые фотоэлектрические преобразователи.

Пример того, как небольшой поселок можно сделать энергонезависимым

Современные модификации солнечных батарей различаются такими параметрами, как производимая мощность и габариты. Поэтому эти устройства с одинаковым успехом применяются в самых разных конструкциях, начиная с портативных калькуляторов и оканчивая солнечными электростанциями.

На схеме показано, из чего состоит наиболее распространённая батарея солнечного света

При сборке фотоэлемента на пластину монокристаллического кремния с шириной запрещенной зоны 5 эВ наносится слой фосфора и бора. В слое кремния с добавками фосфора (катод) возникают свободные электроны. В слое кремния с бором (анод) образуются отсутствующие электроны, так называемые «дырки».

Читайте также:  Кладка русской печи своими руками

На схеме показан принцип работы кремниевого фотоэлемента, начиная с воздействия света на поверхность и оканчивая отведением тока

Когда на поверхность фотоэлемента попадает квант света, происходит движение частиц из одного слоя в другой. За счет движения частиц, высвобождается определенное количество энергии, то есть создается разность потенциалов, которую определяет интенсивность света.

Медные дорожки нескольких пластин параллельно спаиваются друг с другом

Совет

Для того чтобы высвобожденную энергию вывести с каждой отдельно взятой пластины, на поверхность фотоэлектрических преобразователей нанесены металлизированные дорожки.

Мощность собранной батареи определяется ее площадью. То есть, чем больше отдельных пластин будет закреплено на панели, тем больше электричества будет выработано.

Разновидности преобразующих панелей и их устройство

Иллюстрации Классификация по типу солнечных элементов
Панели с кремниевыми фотоэлементами. СБ с кремниевыми фотоэлементами это самый распространенный тип панелей (около 85% от всего объёма производимых солнечных батарей).С развитием технологий, цена таких производственных процессов, как выращивание кремния и нанесение легирующего покрытия снижается. Более того, кремний — это самый распространенный элемент в составе земной коры.Именно поэтому будущее солнечной энергетики в ближайшие 50 лет будут определять кремниевые СБ.
Тонкопленочные панели. Такие СБ характеризуются более высоким коэффициентом светопреобразования, в сравнении с кремниевыми аналогами.Применение прямозонных полупроводников в качестве фотоэлементов, позволяет вырабатывать оптимальное количество энергии при толщине СБ в пару микрон. Панели с такими фотоэлементами немного весят и могут устанавливаться своими руками на крыши жилых домов, на крыши автомобилей и т.п.
Концентраторные модули. Это самые дорогие, но и самые эффективные СБ (эффективность светопреобразования около 44%).В конструкции этих фотоэлементов применены полупроводники нескольких типов, расположенные слоями в определённом порядке. Например, распространённый вариант: Ge — полупроводник подложка, GaAs — средний слой и GaInP — верхний слой.За счет особого расположения полупроводников обеспечивается эффективное усвоение солнечной энергии, как в ясную, так и в облачную погоду. Сборка СБ на основе концентраторных модулей технически сложна, а потому цена устройств высокая.
Органические батареи. Эти панели пока что отсутствуют в продаже. Фотоэлементы в составе панелей работают по принципу фотосинтеза растений. Для этого поверхность фотоэлементов покрыта слоем светочувствительной краски.На фото — модель дерева с листьями из органических батарей.
Иллюстрации Классификация кремниевых фотоэлементов в соответствии с типом кристалла.
Фотоэлектрические преобразователи из монокристаллического кремния (КПД 15-20%). Основа фотоэлемента — чистый кремниевый монокристалл, выращенный из кремниевого расплава.Готовые монокристаллы имеют форму стержня, которому придается форма куба. Куб нарезается на пластины с толщиной 180 Мк.Нарезанные пластины очищаются и армируются защитным покрытием. Поверхность подвергается металлизации, после чего на нее наносится антирефлексионное покрытие.
Фотоэлектрические преобразователи из поликристаллического кремния (КПД 10-15%). Поликристаллический кремний выращивается из остывшего кремниевого расплава.Из-за низкой температуры расплава процесс формирования стержней протекает медленно. Тем не менее, инструкция их производства проще формирования монокристаллов.
Фотоэлектрические преобразователи из аморфного кремния (КПД 8-10%). Производство аморфного кремния выполняется по технологии испарительной фазы, а именно, кремниевая пленка крепится на несущем материале и армируется защитным покрытием.Преимущества технологии — малая себестоимость и возможность изготавливать панели большой площади.Недостаток фотоэлементов из аморфного кремния — малый эксплуатационный ресурс из-за ускоренной деградации.

Эффективное расположение

Чтобы эксплуатация батарей была наиболее эффективной, устройство должно вырабатывать электричество наибольшее количество времени в течение светового дня. Добиться максимальной эффективности использования можно за счет правильного расположения плоскости относительно траектории прохождения солнца.

Иллюстрации Популярные способы расположения
Статичное расположение. Солнечная панель располагается с небольшим наклоном в восточном направлении. В итоге солнечный свет будет попадать на фотоэлементы большую часть дня.
Изменяемое расположение. Увеличение эффективности энергопреобразования возможно за счет установки панели фотоэлементов на подвижной конструкции.Благодаря такому решению плоскость, в зависимости от положения солнца, будет менять угол наклона. Впрочем, такое решение применяется нечасто, так как из-за монтажа и эксплуатации электропривода увеличивается цена системы в целом.

Интеграция солнечных батарей в электрическую сеть

Солнечная батарея (СБ) вырабатывает электрический ток, но для того чтобы постоянное напряжение применить в быту, его нужно трансформировать в переменный ток и пустить в сеть или аккумулировать для последующего применения.

На фото показан автомобильный инвертор, преобразующий постоянный ток (12 В) в переменный ток с параметрами бытовой электросети (50 Гц, 220 В)

Для трансформирования постоянного напряжения в переменное, применяется специальное оборудование — инвертор. На вход устройства подаётся постоянное напряжение, а на выходе получается переменный ток с требуемой частотной характеристикой и необходимой мощностью.

Аккумуляторы для бытовой солнечной электростанции — для удобства монтажа по бокам предусмотрены кронштейны для стойки

Для накопления электроэнергии применяются свинцово-кислотные аккумуляторы. Обратите внимание на то, что солнечные панели комплектуются специальными аккумуляторами, которые по рабочим параметрам и по конструкции отличаются от обычных автомобильных аккумуляторов.

Источник: https://stroim24.info/chto-takoe-solnechnye-batarei-i-kak-oni-rabotayut/

Как работает солнечная батарея: принцип действия, как устроен прибор

Солнечные батареи — популярный экологически чистый и безопасный источник электроэнергии. В последнее время эта технология нашла широкое распространение, мотивируя людей к переходу на возобновляемую и доступную энергию, направленную впоследствии на питание промышленной и бытовой техники. Чтобы разобраться в сложном процессе, нужно предварительно узнать, как работает солнечная батарея.

Описываемое устройство уникально тем, что преобразует световую энергию, получаемую от солнечных лучей, в электроток. В основу таких приборов стандартно заложены фотоэлементы в виде фотоэлектрических полупроводниковых преобразователей.

Если рассматривать современные модели батарей, работающих от солнца, они различаются по ряду параметров:

  • габариты;
  • производимая мощность;
  • производитель (стоимость).

Стоит детальнее разобраться, как устроена солнечная батарея. Во время сборки фотоэлемента на монокристаллическую пластину из кремния наносится тонкий слой из бора и фосфора. В кремниево-фосфорной прослойке образуются свободные электроны.

Полоска же с добавлением бора (анод) представлена отсутствующими электронами. Поступление на фотоэлемент кванта света приводит частицы в движение, они перемещаются между слоями. Передвигающиеся электроны высвобождают некое количество энергии, образуя разность потенциалов.

Последняя определяется интенсивностью подаваемого света.

Высвобожденная описанным методом энергия должна выводиться из отдельных многочисленных пластин. Для этого на фотоэлектрических преобразователях созданы металлизированные дорожки. Максимальная мощность батареи напрямую зависит от ее площади. Количество вырабатываемого электричества возрастает пропорционально увеличению численности отельных пластин.

Виды преобразующих панелей

Существует несколько видов батарей, отличающихся конструктивными особенностями, процентным соотношением преобразования солнечного света. Они обладают следующими характеристиками:

  1. Панели на основе кремниевых фотоэлементов являются наиболее распространенными, представляют порядка 80% от общего объема создаваемых устройств. Добыча кремния и создание легирующего покрытия является дорогостоящей процедурой, но в настоящее время стоимость таких производственных процессов постепенно уменьшается. Кремний не является редким элементом земной коры. В ближайшем будущем именно батареи, основанные на нем, будут применяться повсюду. Существенный недостаток заключается в небольшом коэффициенте светопоглощения, т. к. кремний относится к непрямозонным полупроводникам. Готовые фотоэлементы в результате имеют увеличенную толщину, а устройство много весит.
  2. Отличительная черта панелей тонкопленочного типа — повышенный в сравнении с предыдущим вариантом коэффициент светопреобразования. Фотоэлементы (прямозонные полупроводники) толщиной всего в пару микрон вырабатывают достаточное количество энергии. Масса обозначенных панелей незначительная, они часто устанавливаются на жилых домах, автомобилях. Основное преимущество тонкопленочных батарей заключается в возможности эффективно функционировать даже в пасмурную погоду.
  3. Концентраторные модули отличаются самой большой эффективностью (порядка 45%), но их также отличает высокая цена. Конструктивно фотоэлементы представлены одновременно полупроводниками нескольких видов, выстроенных в определенной последовательности. Часто применимая схема представлена дорожкой-полупроводником Ge, верхним слоем GaInP, средним слоем GaAs. Такие пласты расположены особым образом, за счет чего солнечная энергия эффективно усваивается в пасмурную и в ясную погоду. Особенность заключается в сложной сборке концентраторных модулей, требующей максимальной точности.
  4. Батареи органического типа находятся в разработке, в продаже их невозможно встретить. Их фотоэлементы работают аналогично фотосинтезу растений. На их поверхность нанесен тончайший слой светочувствительной краски.
  5. Фотоэлектрические преобразователи, основанные на монокристаллическом кремнии (эффективность порядка 20%). В этом случае основу фотоэлемента представляет монокристалл из очищенного кремния, выращенный из специального кремниевого сплава. В готовом виде монокристаллы представлены стержнями кубической формы. Далее полученный куб разделяется на пластины не более чем в 180 Мк толщиной. Полученные детали тщательно очищаются, проходят процесс армирования специальным защитным слоем. Поверхность металлизируется, обрабатывается антирефлексивным веществом.
  6. Фотоэлектрические панели, работающие на поликристаллическом кремнии (КПД — около 15%). Этот материал добывается при переработке кремниевого остывшего расплава. Процесс образования рабочих стержней продолжительный, т. к. расплав происходит при низкой температуре, но значительно проще в сравнении с формированием монокристаллов.
  7. Батареи фотоэлектрического типа на аморфном кремнии (эффективность — 10%). Основной компонент добывается по принципу испарительной фазы, когда пленка из кремния закрепляется на несущем материале, армируется специальным компонентом для обеспечения защиты. Преимущество заключается в производстве панелей масштабных площадей, малой себестоимости. Из отрицательных моментов отмечается незначительный эксплуатационный ресурс, причиной чему служит ускоренная деградация.

Эффективное расположение прибора

Высокая эффективность от эксплуатации батарей на солнечных лучах достигается путем выработки необходимой энергии на протяжении наибольшего количества часов в световой день. Решается поставленная задача посредством правильного расположения описываемых панелей по отношению к траектории солнечных лучей.

Если говорить про распространенное статичное размещение батареи, предполагается ее обращение в восточном направлении с незначительным уклоном. Так солнце на протяжении большей части светового дня будет поступать на фотоэлементы.

Введение в электросеть

Устройство солнечных батарей заключается в преобразовании энергии солнца в электроток. Однако для его использования в бытовых условиях необходима трансформация еще в переменный ток, поступление непосредственно в рабочую электросеть.

Трансформирование получаемого напряжения возможно только при использовании инвертора.

Так, на вход подобного приспособления поступает постоянный ток, а на выходе получается переменный, отличающийся необходимой мощностью, оптимальными частотными характеристиками.

Обратите внимание

Принцип работы солнечной батареи заключается также в скоплении электроэнергии свинцово-кислотными аккумуляторами, которыми комплектуются абсолютно все солнечные батареи.

Источник: https://220v.guru/vse-ob-elektroenergii/solnechnaya-energiya/kak-rabotaet-solnechnaya-batareya-i-osobennosti-ee-ustroystva.html

Ссылка на основную публикацию